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Abstract—Subject of this analysis is to show how storage is operated optimally under renewable and 

load uncertainty in the electricity system context. We estimate a homogeneous Markov Chain 

representation of the residual load in Germany in 2014 on an hourly basis and design a very simple 

dynamic stochastic electricity system model with non-intermittent generation technologies and 

storage. We compare these results to perfect foresight findings and identify a significant over 

estimation of the storage potential under perfect foresight. 
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1. Overview 

In electrical systems storage has the technical potential to increase efficiency significantly - especially in 

the context of integrating intermittent renewable technologies. This is achieved by shifting energy from 

periods of low demand to periods of high demand, which raises the utilization of base load power plants 

and reduces that of peak load power plants. The full gain is achieved if generation capacity is adapted 

to the “equilibrated” load situation - with a higher base load capacity and fewer peaking stations. In this 

case, the installed fossil generation capacity might fall below peak load level. Since the amount of energy 

stored is limited, there is a risk of expensive outages in cases of prolonged demand peaks. 

Many previous analyses of storage are based on perfect foresight models in which the operator could 

ensure that the store always approaches a prolonged peak with just enough energy to avoid an outage. 

In the real world, it may be impossible to predict the length of a peak, and a different strategy is 

needed: taking this issue into account, our aim is to derive the optimal way of integrating the storage 

into the system. 

We estimate a homogeneous Markov Chain representation of the residual load in Germany in 2014 on 

an hourly basis (section 2.1) and design (section 2.2) a very simple dynamic stochastic electricity system 

model with fossil generation technologies and storage (a Markov Decision Process). This model is solved 

in section 3 for a stationary state using numerical methods (linear optimization) and the optimal storage 

strategy is presented. It is shown that under uncertainty at high demand an increasing share of the 

storage is "frozen" in its charged state to avoid lost load (outages). Therefore a “buffer share” of the 

storage is not used for equilibration of load any more. Furthermore, this buffer state of charge is 

established, if necessary, even in periods of high demand, so that the storage operation stresses the 

system. 

To implement the full efficiency potential of storage, generating capacities have to be reduced. Peak 

load can then exceed installed capacity. If this is the case, in the optimum under load uncertainty a 

storage buffer is created and maintained. In section 4 the optimal strategy is compared to the optimal 
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solution derived under perfect foresight of explicit drawings of the stochastic load process. It is shown 

that a “buffering” is not required in optimal storage operation under perfect foresight assumption. 

Furthermore compared to the perfect foresight equivalent, the more realistic storage management 

strategy includes more “waiting”. As result, the storage cannot be operated as efficiently as in the 

perfect foresight case, reducing the cost savings available. 

We also find that an increasing risk of reaching peak load further reduces the efficiency potential of the 

storage. Since the optimal storage strategy is not implemented “naturally” by competitive storage 

operators, it might be advisable not to adjust generation fully in response to the growth of storage, 

reducing the difficulty of regulating it. This analysis refines the assessment of the economic potential of 

electricity storage, thus contributing to more effective planning of energy systems of the future, where 

outages are avoided.  

2. Methodology 

We derive the expected cost minimizing way of operating energy storage and non-intermittent 

generation and adjusting non-intermittent capacities for a given storage capacity (300 GWh in our case 

study). The operator aims to satisfy demand while processing sequentially revealed information about 

the uncertain residual load. The problem is stochastic and multiscale as it includes short term 

information processing, storage management and generation decisions as well as long term 

investment decisions in generation capacities. We develop a dynamic stochastic electricity system 

optimization model as a Markov Decision Process. A solution is an optimal strategy that assigns each 

state - defined by the amount of stored energy, residual demand and non-intermittent generation 

capacities - a probability distribution over possible charging and discharging values. The non-

intermittent generators run in merit order to meet the residual demand plus charging (or minus 

discharging). The model is quantified with an estimated homogeneous Markov Chain representation 

of the residual load (demand minus wind and solar output) in Germany in 2014 on an hourly basis and 

with technology cost data. The model is solved for a stationary policy using a linear optimization 

approach embedded in a hill climbing capacity optimization environment. This strategy and the 

stationary probabilities are analysed using counter factual experiments and they are compared to the 

optimal solution derived under perfect foresight of explicit drawings of the stochastic load process. 

Thus features of the optimal strategy can be derived and the perfect foresight "error" can be 

quantified. 

2.1 Modelling residual load in Germany as Markov Chain 

In this section it is examined to what extent the modelling of the residual load of Germany in 2014 in 

hourly resolution a) as a homogeneous Markov Chain and b) in 10 GW steps is empirically valid1. The 

residual load is defined as load reduced by renewable generation - in the case of Germany, mainly wind 

and solar power. 

  Load Wind Solar Residual Load 

Total GWh 504166 51443 32816 419906 

Day Mean GWh 1381 141 90 1150 

Max GW 79 29 24 78 

Min GW 35 0 0 14 

Table 1: Benchmarks of residual load in Germany 

The annual load in Germany amounts to 500 TWh. 10% of this load are generated by wind and 7% by 

solar. Herewith the residual load is reduced to 83%. The peak load is 79 GW. At maximum 29 GW of 

                                                           
1 See [13] and [14] for a discussion of Markov Load modelling. 
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wind and 24 GW solar respectively are produced. Nevertheless, the peak of the residual load remains 

at 78 GW, which reflects the intermittent character of renewable generation. The load will never fall 

below 35 GW; the minimum of the residual load, however, is only half of the lower bound (14 GW). It is 

obvious that renewables a) cover a substantial share of the load (17%), b) halve the minimum load but 

c) do not decrease peak load (the residual load duration curve is shown in figure 1, red). 

 
 

Figure 1: Load Duration: German data 2014 (red curve), rounded 

German data 2014 (black step function), stationary distribution of 

the Markov Chain (blue bar step function) 

Figure 2: Partial autocorrelation plot of the German residual load 

2014 (orange) and of a simulated path of the Markov Chain 

The (consistent) maximum likelihood estimators of the transition matrix of a homogeneous Markov 

Chain are the numbers of state transitions normalized per line. The estimator of the transition matrix 

for the residual load in Germany is2: 

𝑃 =

(

 
 
 
 
 

0 1 0 0 0 0 0 0
0.02 0.79 0.19 0 0 0 0 0
0 0.03 0.8 0.17 0 0 0 0
0 0 0.05 0.81 0.14 0 0 0
0 0 0 0.12 0.76 0.12 0 0
0 0 0 0 0.2 0.73 0.07 0
0 0 0 0 0 0.22 0.77 0.01
0 0 0 0 0 0 0.45 0.55)

 
 
 
 
 

 

The estimated Markov Chain is a) "irreducible", thus all states are mutually accessible, b) "aperiodic", 

i.e. the greatest common divisor of the return times to the initial states is one and c) all states are 

"positive recurrent", i.e. with probability 1 there is a return to the initial state and the anticipated return 

time is finite. In this case, there is a steady state distribution q with limt p(t) = limt p(0)Pt = q, 

independent of the initial distribution. q is the solution of the linear system of equations  

q = P q, q1 = 1. The solution of this system for the estimated Markov Chain P results in the stationary 

distribution: q [%] = {<1, 1, 9, 29, 34, 20, 6, <1}. 

If these probabilities are interpreted as interval length and the states are ordered, q can be interpreted 

as load duration. Compared with the original data, the approximation of the discretized load (figure 1, 

black step function) by the Markov Chain (blue step function) is accurate. 

Intuitively the estimated Markov Chain is a sound representation of the frequency of the state 

transitions of the residual load. It is therefore not surprising that also the long-term distribution of the 

residual load is well approximated. However, periodic structures, such as daily, weekly and annual 

rhythms cannot be approximated by aperiodic first order Markov Chains. Thus, the partial 

autocorrelation coefficients of the residual load (figure 2) are significant (5% ± 0.02) for almost all lags 

                                                           
2 P is the matrix of probabilities pij. pij is the probability that residual demand of size 10xi GW is followed by residual demand 10xj GW. p11 is 

the element in the upper left corner. 



4 

 

(orange points). In contrast, the coefficients of the Markov Process are only significant for a lag of one 

hour 

As an illustration of the two processes, respectively the difference between them, in figure 3: a) a 500 

hours segment of the residual load in Germany, b) a 500 hours segment of the rounded (to 10 GW) 

residual load in Germany and c) a 500 hours simulation of the estimated Markov Chain is shown. It is 

not obvious that there is a fundamental difference between time series b) and c). 

 

Figure 3: a) 500 hours segment of the residual load in Germany 2014, . 

b) 500 hours segment of the rounded residual load in Germany 2014, c) 500 

hours simulation of the estimated Markov Chain 

In summary, the modelling of the residual load as a first order homogeneous Markov Chain represents 

the load transitions and the load duration very well. With this interpretation, a stochastic energy 

system model is formulated in section 2.2. Nevertheless, the order of load changes is random and does 

not reflect the natural daily, weekly and seasonal rhythms. Therefore, there is substantially more 

uncertainty about the future residual load development represented in the model than in reality. Thus 

the Markov approach to residual load modelling would be more appropriate for a scenario with a 

higher share of intermittent renewables. The order of the load transitions is relevant for the operation 

of the storage. 

2.2 Electricity System Model 

In the following welfare-maximizing capacity-, output- and storage-decisions are determined to derive 

the social value of electricity storage. Welfare is interpreted as system cost. In the following case study 

the availability of a free storage capacity Ŝ = 300 GWh (equivalent to 6 hours average load in Germany; 

for an overview of storage potential in Europe see [15]) is assumed. It is then possible to compare the 

system cost in a scenario with storage to a scenario without storage and thus to determine the value of 

storage in terms of system cost avoidance. This comparison is on the one hand conducted under perfect 

foresight (Det) of the residual load Dt [GW] and on the other hand under stochastic residual load (Sto), 

as described in the previous chapter, to identify the impact of the two assumptions on the valuation of 

a storage option. 

Electricity can be generated by a portfolio of non-intermittent technologies - modelled as simple stack 

in contrast to generator stack. The vector xt  0 [GW] describes the related production per hour. To 

apply these generation technologies initial investments with capacities k [GW] have to be made (green 

field approach). The capacity limits the non-intermittent generation k  xt. st [GW] corresponds to the 

charging or discharging of the storage per hour. The stored energy is St [GWh] (Ŝ  St  0). There are 
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neither politically motivated interventions (CO2 prices) nor technical restrictions that impact the use of 

specific technologies - neither distribution effects are taken into account (copper plate assumption). 

The alternatives are evaluated in a system cost approach that includes fixed costs cvar k and variable 

costs cvar xt over 40 years. In the deterministic as well as in the stochastic model the time resolution is 

one hour. In the stochastic model only a single hour is modelled and then extrapolated to 40 years, 

while in the deterministic model the result of a year is extrapolated. Costs are not discounted but 

modelled as long-term variable average costs in €/hour3. 

The monetary value of unsatisfied demand (VoLL, value of lost load) has been quantified in 

comprehensive empirical studies. Following [11], the social planner can decide upon capacity and 

production such that - assuming the unsatisfied demand is valued with this VoLL = 100 max {cvar}4 – a 

satisfaction of the complete demand is discarded in favour of lower system costs. The satisfaction of 

the residual load is therefore not modelled as a restriction, but incorporated as part of the objective 

function5. This has the particular advantage that an endogenous determination of reserve capacity is 

possible within the model. The latter is described as desirable by [18] for future electricity system 

modelling approaches that are able to consider and to evaluate the effects of the inclusion of additional 

intermittent renewables quantitatively. 

Variable and fixed costs of non-intermittent generation technologies based on [20] are presented in 

table 2: 

Technology  Coal IGCC 
Combust 
turbine 

Combined 
cycle 

Nuclear 

Variable Cost  
(Fuel+OM) 

€/MWh 27 25 55 40 22 

Fix cost €/KW 2000 2500 650 800 3250 

Table 2: technology specific cost data; constant lifetime of the plants of 

40x365x24[h/plant], Source: [20] 

The welfare-maximizing capacity-, output- and storage-decisions under the perfect foresight 

assumption are the solution of the following problem with T = 36524 and 𝜂Det = 40T: 

min𝑥𝑡,𝑘,𝑠𝑡 𝑐
𝑓𝑖𝑥𝑘 +

𝜇𝐷𝑒𝑡
𝑇

∑ 𝑐𝑣𝑎𝑟𝑥𝑡 + 𝑉𝑜𝐿𝐿 𝑦𝑡
𝑇

𝑡=1
 (1) 

𝑦𝑡 ≥ 𝐷𝑡 + 𝑠𝑡 − 𝑥𝑡 (2) 

s. t. : 𝑆̂ ≥ 𝑆𝑡 = 𝑆𝑡−1 + 𝑠𝑡 ≥ 0 (3) 

s. t. : 𝑘 ≥ 𝑥𝑡 ≥ 0 (4) 

s. t. : 𝑦𝑡 ≥ 0 (5) 

In contrast to the perfect foresight model in the case of uncertainty the information available about the 

residual load will be considered as well as the impact of output and storage decisions on the future 

revenues. These requirements are met in the stochastic dynamic programming approach by the 

                                                           
3 To give up discounting avoids implausible unloading in storage models. Similarly Tijms [6] explains: „For many applications of Markov 
decision theory this criterion is the most appropriate optimality criterion. The average cost criterion is particularly appropriate when many 
state transitions occur in a relatively short time.” 
4 For a literature review see [7], [8], [9], [10]. 
5 Modeling the VoLL reminds of the „penalty“-approach to the numerical solution of constrained nonlinear optimization problems. This 
analogy can be used to apply an (intuitive) theorem that sheds light on the modelling approach: The penalty solution converges to the 
solution of the constrained problem, as VoLL tends to infinity. Proof: penalty methods e.g. Luenberger (1984). 
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determination of an optimal strategy (or “policy”6, which consists of decision rules for each state). Every 

decision rule allows to select an action on the basis of the occurring state from a distribution of 

alternatives (actions). In our case, the state of the system consists of the residual load Dt, the energy 

stored St and the initially fixed non-intermittent generation capacities k and the storage capacity Ŝ. The 

decisions (actions) in each period are the level of non-intermittent generation xt and the change of the 

state of charge st 
7. A decision rule ft assigns a distribution over the actions (st,,xt) at each state (St,Dt,k,Ŝ): 

(st,,xt) = f (St,Dt,k,Ŝ). A strategy π consists of decision rules for each time π = (f1, f2,…), esp. a stationary 

decision rule π = (f, f,…). 

Using these definitions, the optimization of the energy system, with residual load modelled by the 

Markov Chain P(Dt+1|Dt) can be described as a Markov Decision Process8. Therefore, the simplifying 

approximation of a long but finite horizon by an infinite one is applied. The optimal strategy is a solution 

of the problem 

min𝑘,𝜋 𝑐
𝑓𝑖𝑥𝑘 + 𝜇𝑆𝑡𝑜 lim

𝑇→∞
 
1

𝑇 + 1
E [ ∑ 𝑐𝑣𝑎𝑟𝑥𝑡 + 𝑉𝑜𝐿𝐿(𝐷𝑡 + 𝑠𝑡 − 𝑥𝑡)

+
𝑇

𝑡=0
] (6) 

considering 𝜂Sto = 3654024, the capacity restriction k  xt  0, the state transitions a) deterministic: Ŝ 

 St  0, and b) stochastic: P(Dt+1|Dt) and the initial conditions (S0, D0, Ŝ). Theorems of existence and 

structure of an optimal strategy are proved e.g. in [19]. 

The problem can be decomposed to an output&storage management problem and a capacity 

optimization. The output problem can be solved separately. This reduces complexity considerably. The 

solution of the output problem xt at given capacity is a simple merit order9: The technology with lowest 

variable cost is used as long as its capacity is exhausted and the next more "expensive" technology has 

to be used and so forth. This optimum output solution makes it possible to define an indirect cost 

function in which the load D that exceeds the non-intermittent capacity k = (k1,…,kI) is valued with the 

VoLL: 

𝐶(𝐷, 𝑘) =

{
 
 

 
 

𝑐1
𝑣𝑎𝑟𝐷 0 ≤ 𝐷 < 𝑘1

∑ 𝑘𝑗𝑐𝑗
𝑣𝑎𝑟

𝑖

𝑗=1
+ 𝑐𝑖+1

𝑣𝑎𝑟 (𝐷 −∑ 𝑘𝑗
𝑖

𝑗=1
) 𝑘𝑖 ≤ 𝐷 < 𝑘𝑖+1

∑ 𝑘𝑗𝑐𝑗
𝑣𝑎𝑟 + 𝑉𝑜𝐿𝐿 (𝐷 −∑ 𝑘𝑗

𝑖

𝑗=1
)

𝐼

𝑗=1
𝑘𝐼 < 𝐷

 (7) 

Thus the decision rules simplify to st = f (St,Dt | k,Ŝ) respectively the strategy to π(k,Ŝ) = (f,f,…). The 

decomposition of the problem is then: Determine 

𝑉(𝑘|𝑆0, 𝐷0, 𝑆̂) = min
𝜋(𝑘,𝑆)

lim
𝑇→∞

 
1

𝑇 + 1
E [ ∑ 𝐶(𝐷𝑡 + 𝑠𝑡|𝑘)

𝑇

𝑡=0
] (8) 

with respect to the deterministic state transition Ŝ  St+1 = St + st  0 and the stochastic P(Dt+1|Dt). 

Determine the capacity k by solving 

                                                           
6 For an overview of stochastic analyses in the energy sector see e.g. [12], [16], [17], [21.] 
7 This optimization problem is therefore decisively more complex, than e.g. the original stochastic optimization problem of the Real Business 
Cycle Theory. In the latter only storage management has to be optimized without considering the optimization of initial conditions 
(capacities). 
8 For an introduction to the topic see e.g. [1], [2], [3], [4] and [5]. 
9 It can be shown that the following rule satisfies the Kuhn-Tucker conditions of the corresponding linear program. 
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min
𝑘
 𝑐𝑓𝑖𝑥𝑘 + 𝜇𝑆𝑡𝑜𝑉(𝑘|𝑆0, 𝐷0, 𝑆̂) (9) 

Both problems can be solved sequentially. With the discrete states {1,..., |Ŝ|} in 10 GWh and {1,…,|D|}in 

10 GW steps the admissible actions in a state are 

𝐴 ((𝑆, 𝐷)|𝑘, 𝑆̂) = {𝑠 ∈ ℕ| 1 ≤ 𝑠 + 𝑆 ≤ 𝑆̂, 1 ≤ 𝑠 + 𝐷 ≤ 𝟙𝑘} (10) 

Applied to the storage problem [19] proves that from the solution of the linear program: 

max
𝑑((𝑆,𝐷),𝑠)

∑ 𝑑((𝑆, 𝐷), 𝑠)𝐶(𝐷 + 𝑠|𝑘)
(𝑆,𝐷),𝑠∈𝐴(𝑆,𝐷)

 (11) 

∑ 𝑑((𝑆, 𝐷), 𝑠)
(𝑆,𝐷),𝑠∈𝐴(𝑆,𝐷)

= 1 (12) 

𝑑((𝑆, 𝐷), 𝑠) ≥ 0 (13) 

∑ 𝑑((𝑆, 𝐷), 𝑠)
𝑠∈𝐴(𝑆,𝐷)

=∑ 𝑑((𝑆′, 𝐷′), 𝑠)
𝑆′,𝐷′,𝑠∈𝐴(𝑆′,𝐷′)

𝑃𝑟𝑜𝑏((𝑆′, 𝐷′), (𝑆, 𝐷), 𝑠) (14) 

𝑃𝑟𝑜𝑏((𝑆′, 𝐷′), (𝑆, 𝐷), 𝑠) = {
𝑃(𝐷′|𝐷) 𝑆′ = 𝑠 + 𝑆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (15) 

the decision rule f 10can be derived as follows: 

𝑃𝑟𝑜𝑏(𝑠|(𝑆, 𝐷)) =
𝑑((𝑆, 𝐷), 𝑠)

∑ 𝑑((𝑆, 𝐷), 𝑠′)𝑠′∈𝐴(𝑖)

. (16) 

Thereby V(k | S0, D0, Ŝ) can be determined. This allows the solution of the capacity problem with a hill-

climbing approach. It proves efficient to include a search direction that is capacity preserving with 

substitutions of "adjacent"11 technologies. The solution of a case with a storage capacity of 300 GWh 

is described in detail in the following section 

3. Results: Optimal strategy of the stochastic model 

We break down the integration of a storage with a capacity of 300 GWh in the electrical system for the 

stochastic residual load determined in section 2 in scenarios of capacity constraints. These are then 

gradually relaxed to identify its impact on the optimal strategy, generation capacities, stationary state 

probabilities and costs. An overview of the scenarios and the results is summarized in Table 4. 

Scenario 
Strategy 

Cost Index 
Total  Storage Capacities Comment Variable Fixed Total 

1. 0 40,0,10,20,10 Optimized capacities No figure  172500 573082 0.0% 

2. 300 GWh 40,0,10,20,10 Opt. stor-
age mana-
gement  

not adjusted capacities No figure 390171 172500 562671 -1.8% 

3. 300 GWh 50,0,0,10,20 restrictedly adjusted capacities Figure 5 377968 183500 561468 -0.2% 

4. 300 GWh 50,0,0,20,0 and capacities Figure 6 378226 178500 556726 -0.9% 

Total -2.9% 

Table 4: Scenarios of storage management and system capacity adjustment 

                                                           
10 which assigns to each alternative sA(S,D) for a given state (S,D) a probability, 
11 - with respect to the fixed costs - 
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Scenario 1 involves the optimization of non-intermittent generation without storage and capacity 

constraints. In scenario 2, a 300 GWh storage is introduced, but capacities are not adjusted to the 

resulting load duration. Differences in the results can be attributed to the optimal storage management. 

The influence of capacity adjustments, is then examined in two further scenarios: In scenario 3 the 

capacity structure and storage management is optimized - only restricted by an unchanged total 

capacity covering peak load and finally this constraint is removed in scenario 4. 

In the non-storage reference scenario (1) optimal non-intermittent capacities are optimized to 

{40,0,10,20,10} GW. Thus total capacity covers peak load of 80 GW and generation equals residual load 

at any time. As reference total system cost are 573082 mio Euro. 

Adding a storage of 300 GWh while maintaining capacities (scenario 2) reduces total cost by 1.8%. The 

according optimal stationary strategy π is shown in figure 4. Eleven grid lines of the state of charge are 

plotted in 30-GWh steps on the vertical axis; eight grid lines in steps of 10 GW mark the residual load 

on the horizontal axis. At each intersection of the grid lines changes in the state of charge are indicated 

by directed arrows. The length of these arrows corresponds to the quantity of change in 10 GWh steps. 

A black ring denotes an unchanged state of charge. The stationary probabilities of the Markov decision 

process with the optimal strategy are visualized at the grid points by the size of the areas of blue circles. 

To assess the state of the energy system, non-intermittent production and marginal costs of production 

are shown at each grid point. 

  

Figure 4: Optimal charging strategy (arrows: length represents 
un/loading in 10 GW steps) and stationary probabilities of the Markov 
Decision Process (blue circles) – generation capacity adjusted to no 
storage case; numbers: non-intermittent generation, marginal cost 
[Eurocents/kWh] 

Figure 5: Optimal charging strategy (arrows: length represents 
un/loading in 10 GW steps) and stationary probabilities of the 
Markov Decision Process (blue circles) – generation capacity 
restricted to 80 GW; numbers: non-intermittent generation, 
marginal cost [Eurocents/kWh] 

First capacities are optimized while restricted to 80 GW in total. Thus residual load can be covered by 

non-intermittent generation under all circumstances kR = (50, 0, 0, 10, 20) with expected system costs 

of 561468 million euros. 

Storage is used to stabilize residual load longer at higher levels by charging and discharging (Figure 4). 

This increases utilization of non-intermittent generation capacity and therefore efficiency. For this 

purpose, the storage is charged below a residual load of 50 GW and discharged above – the stronger, 

the greater the deviation from 50 GW. Thus a load of 50 GW is achieved over a wide range of the grid, 

making an expansion of base load capacity profitable. The resulting stationary distribution of states is 

more unequal among the storage states compared to the perfect foresight case (Figure 6). Thus there 

is a more waiting with empty (full) storage for higher (lower) residual demand to come. 

If the restriction is dropped optimal capacity kc = (50, 0, 0, 20, 0) sums up to 70 GW with expected system 

costs of 556726 million euros. Therefore, the residual load of 80 GW cannot be covered without 
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unloading the storage. If the state of charge is zero, it cannot be discharged any further and load is lost 

(red rectangle). This state is valued by the social planner with the extreme marginal cost of 500 

Eurocents/kWh. 

As before storage is used to stabilize residual load (Figure 5). But stabilization is limited by three forms 

of „stabilization actions“ to reduce the risk of losing load: For residual load of 

1. 80 GW unloading the storage it is decelerated below a SOC of 150 GWh from 30 to 10 GWh steps. 

This level of unloading is the minimal level required to avoid lost load. Marginal generation cost rises to 

7, which is accepted to avoid lost load besides the state with an SOC of 0. 

2. 70 GW below a SOC of 90 GWh the storage is - unlike in the restricted case - not operated at all. 

Unloading is not necessary to avoid lost load, but marginal cost climb to 7 once again. 

3. 60 GW below 50 GWh the storage is loaded – instead of unloaded as in the restricted case - in 10 

GWh steps, even if this shifts marginal cost to 7. This operation directly increases the SOC and reduces 

the risk of being drifted to the right by chance and to end up in the lost load state. 

The abdication of unloading above a residual demand of 50 GW and a SOC of 50 GWh reduces the 

stationary probabilities to almost zero for an SOC of less than 50 GWh. These stabilizing operations 

form a “buffer zone” in the strategy space. Compared to the perfect foresight case this buffering 

reduces the efficiency gain of storage. 

 

 

Figure 6: Optimal charging strategy and stationary probabilities of the 
Markov Decision Process – unrestricted capacities; numbers: non-
intermittent generation, marginal cost [Eurocents/kWh] 

Figure 6: Frequencies of state occurrence in the perfect foresight 
storage model 

By increasing the utilization of non-intermittent generation, the load duration curve becomes flatter 

with a higher base than without storage (without figure). Compared with the perfect foresight model 

the amount of "Peak Shaving" is not achieved. Therefore, system cost reduction by including a 300 

GWh storage is lower under stochastic residual load than under perfect foresight of the same residual 

load. If the perfect foresight solution is categorized by the frequency of being in a specific state, the 

corresponding probabilities can be entered in a state diagram (Figure 5). It becomes apparent that the 

state of charge is distributed more evenly than in the stochastic model (Figure 6). 

4. Conclusions 

Table 3 shows the system cost and capacity of non-intermittent generation distinct by information 

scenarios and available storage capacity. Under the perfect foresight hypothesis with the residual load 

for Germany in 2014, system costs can be reduced by 3.6% using 300 GWh storage capacity. This is 

achieved by a 10% expansion of the base load capacity and a halving average- and peak load-capacity. 

If - instead of the residual load data of Germany - 20 simulated time series from the residual load Markov 
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modelling are used, then the storage option decreases system cost by 4.4% in the perfect foresight case. 

Again, the base load capacity is increased by 10%, peak load by about 1 GW and mean load is reduced 

to less than half. 

 Without  
storage 

300 GWh  
storage 

Change in  
system cost 

Perfect foresight 
Residual load 2014 

570768 
{41,13,9,0,13} 

550030 
{45.6,8.1,4.4,0,5.5} 

-3.6% 

Perfect foresight 
Markov Load 

559010 
{40,0,10,20,0} 

534196  
{44.5,0,5.9,5.6,0.8} 

-4.4% 

Stochastic model 
Markov Load (80GW) 573082 

{40,0,10,20,10} 

561468 
{50,0,0,10,20} 

-2.1% 

Stochastic model 
Markov Load 

556726 
{50,0,0,20,0} 

-2.9% 

Table 3: System cost [Mio Euro] and capacities [GW] of non-intermittent 
generation. 

It is shown that under uncertainty at high demand an increasing share of the storage is "frozen" in its 

charged state to avoid lost load (outages). Therefore, a “buffering” share of the storage is not used 

actively for the equilibration of load any more. Furthermore, this buffer state of charge is established, 

if necessary, even in periods of high demand when a fully-charged store would be able to de-stress the 

system. It can be shown that the size of the buffering area rises as the risk of losing load rises. Thus the 

efficiency gains of storage decrease as uncertainty in the system rises. 

This observation generalizes to other energy carriers like gas: As “generation” capacity falls below peak 

load, there is a sufficient probability of the latter case to occur and the value of lost load exceeds 

generation cost by far, optimal storage management includes holding a reserve capacity for peak load. 

This “buffering” does not occur in the perfect foresight analyses that are still the paradigm of energy 

systems analysis. Estimates of the potential of storage based on perfect foresight are thus 

overestimated. Furthermore, the welfare maximizing strategy includes “not unloading” in high marginal 

cost/price cases. The market implementation of this strategy requires the communalization of lost load 

costs. We propose a contract solution that includes a premium paid in high load cases for not unloading. 

This contract makes the storage operator indifferent between reserve holding and unloading. A further 

option to implement the welfare maximizing strategy would be to operate a sufficiently sized store 

explicitly as a buffer in the public interest. 

Such contracts might be difficult to implement in practice, and so a further option might be the 

operation of the system with imperfectly adjusted capacities such that non-intermittent generation 

capacity exceeds peak load. In this case it has to be decided whether the storage is operated 

"inefficiently" with respect to “full” capacity adjustments, or “efficiently” when peak load capacity is not 

decommissioned “one for one”. The challenges of sustaining rarely-used capacity were a frequent topic 

at the conference, however. 

This analysis refines the assessment of the economic potential of electricity storage, thus contributing 

to more effective planning of energy systems of the future, where outages are avoided. 
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