
The Low Carbon Transition & the Challenge for Distribution Grids

19 September 2013

UK Power Networks – an introduction

How electricity distribution is financed

OUR COSTS

Opex

- Faults
- Trees
- I&M

Capex

- Condition
- Load
- Non-operational

Indirects

Office based costs

OUR REVENUES

Return on RAV (slow money): over 20 – 45 years and covers interest and dividends

Depreciation (slow money): over 20 – 45 years

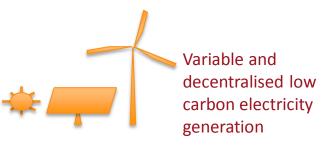
Fast Money (recovered in year)

Pensions

Tax

Incentives and Penalties

Allowed Revenue

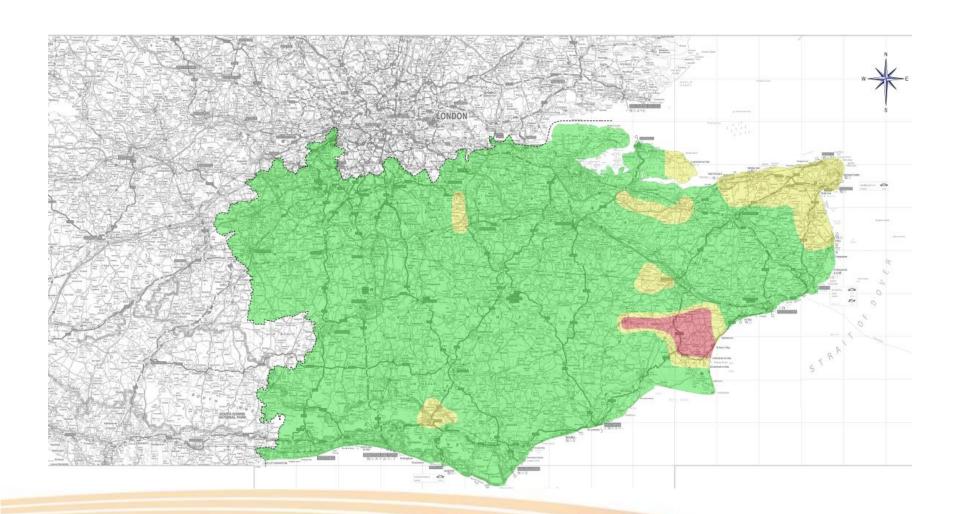

Difference between spend and depreciation is capitalised in the regulated asset value

Our cost of capital has fallen

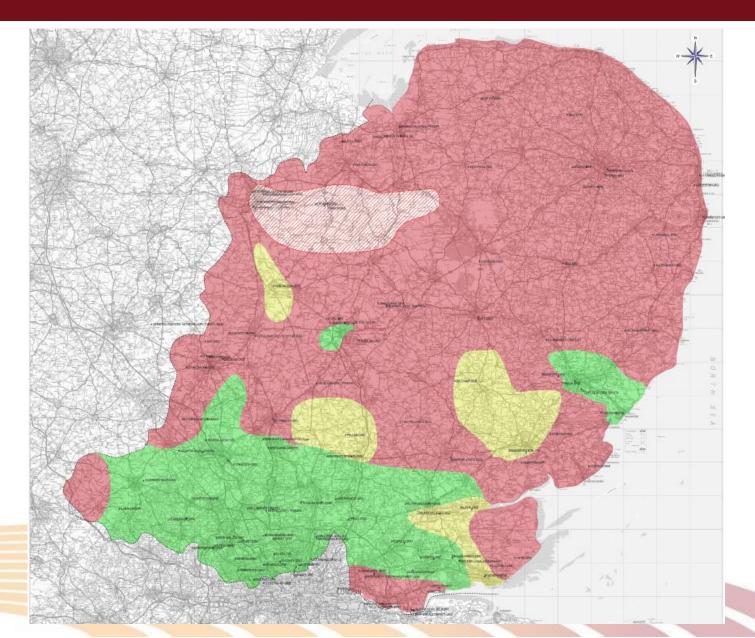
UK 10 year Bond Yields¹ vs. Vanilla WACC

Low carbon transition challenges

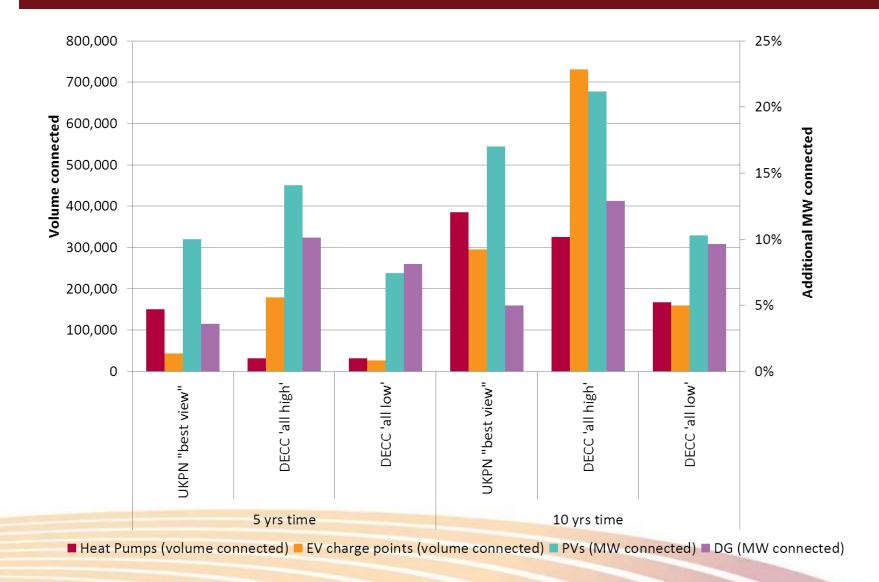
Electrification of heat and transport


CHALLENGES

- Challenges for real-time system balancing and frequency control
- Reverse power flow, voltage and fault level issues on distribution networks
- Potential for low carbon technologies to increase peak demand disproportionally
- Increased network reinforcement required
- New skills required, new risks faced


POTENTIAL

- ✓ Greater network visibility and control
- ✓ Better asset utilisation
- Improved reliability from remote control and automation
- Potential for Time of Use price signals (through smart meters) to engage customers
- Potential for external control over distributed generation, low carbon appliances, and demand


DG heat map – South East

DG heat map – East

DECC forecasts for low carbon technologies

Our business plan deals effectively with uncertainty

- Developed UKPN specific low carbon technology penetration scenarios with Element Energy
- Developed with Imperial College industry leading load forecasting model to better predict the impact of these scenarios
- Worked with Smart Grid Forum Workstream 3 to produce industry forecasting model
- Our business plan contains £135m of smart solutions savings to mitigate this uncertainty
 - £16m of smart metering savings
- Decarbonisation of the economy has a manageable impact in ED1 in all scenarios
 - ED2 may present more of a challenge

Smart Grid solution (£m)	UKPN
Benefit from existing Smart Grid network designs and practices	30
Savings in LV reinforcement compared to forecast volumes	34
Saving from Demand Side Response schemes	38
Savings in overhead line reinforcements	9
Savings from Dynamic Transformer ratings	15
Savings from Partial Discharge monitoring of switchgear	9
Total Smart Grid savings	135

Smart metering benefit (£m)	UKPN
Improved investment planning	1
Reduced customer visits due to accurate energisation status	11
Improved fault information and customer service	4
Total Smart Metering savings	16

Innovation helps us keep costs down

"The most reliable, most innovative, lowest price network group"

Rank(*)	Group	Average customer minutes lost		Average revenues per domestic customer		Innovation funding
		CML 2012 2023		£ p.a. 2012 2023		£ million
1	UKPN	40.5	33	82	84	44
2	WPD	41.7	38	105	102	39
3	SP	46.0	39	111	101	11
4	ENW	47.6	38	108	81	16
5	NPG	66.5	49	92	85	27
6	SSE	68.7	55	124	123	27

Delivering for customers in DPCR5 and ED1

^{*} By CMLs in 11/12. UKPN ranks first in all columns except price in 22/23 (2nd to ENW)

Non-recourse financing of smart meters: challenges

- Smart meters in the UK are a new asset class, requiring lender education
- New technical specifications that have not been manufactured or trialled at scale
- Technical interoperability between communications hub, in home display (IHD),
 smart appliances and smart gas / electricity meters
- Commercial interoperability with new industry roles and processes that have not been tested e.g. customer churn, fault allocation
- Risk of meters being removed early due to commercial reasons e.g. gaining energy supplier may have a more commercially advantageous contract with another meter asset provider (MAP)
- Technology / specification obsolescence (10 years is a long time in technology and communications)
- Asset failure / asset life is an unknown quantity
- Construction risk associated with a new installation workforce

Conclusion

- The low carbon and smart transitions pose major challenges for distribution networks
- UKPN and the other network groups have detailed plans
- Distribution prices will be broadly flat in real terms
- Regulatory continuity and stability is key to cost and availability of finance

Thank you

