Outline

• Misperceptions on security of supply
• The EMR Capacity Mechanism
 – Justification and criticisms
• Long-term future of capacity markets

Who should decide on capacity adequacy?
How to allocate risk and incentivize investment?
Security of supply

- Ambitious RES targets increase intermittency
 - Need flexible peaking reserves
 - Normally comes from old high cost plant = coal
 - Large Combustion Plant Directive 2016 limits coal
 - Integrated Emissions Directive further threat to coal
 - Carbon price floor + hostility to coal => close old coal
 - high EU gas prices and low load factors
 - gas unprofitable, new coal prohibited by EPS

- Future prices now depend on uncertain policies
 - on carbon price, renewables volumes, other supports
 - on policy choices in UK and EU

hard to justify investing in reliable power
What is the problem?

Ofgem’s derated capacity margin

System Operator’s problem

First Capacity Auction delivery

Source: DECC IA
Security of Supply

• Measured by Loss of Load Expectation, LoLE
 – 3 hours per year => Value of Lost Load = £17/kWh
• But spot and balancing prices capped
 – Balancing actions costs will increase to £6/kWh
• Missing money = (£17/-£6/kWh) x 3 hrs/yr = £33/kW yr
=> Pay-as-clear descending clock auction in 2014 for 2018/19
• New build gets 15 yr contract at auction price
 – existing plant: 1 yr contract unless major refurbish
 • must be price taker unless good cause, entrants set price
 • existing plant can delay until later auction (2017)
• DSR auctioned from 2016: 1 yr contracts
Illustrative auction demand curve

- **Price (\(\text{\£}/\text{kW year}\))**
 - Cap: £75/kW year
 - Net CONE: £49/kW year
 - Price taker threshold: £25/kW year

- **Capacity**
 - Minimum: 1.5GW
 - Target: 1.5GW
 - Maximum

- **Source**: DECC IA
What does “Loss of Load” mean?

Market supply

Demand exceeds

Exceeds demand

Supply available in the normal market operation up to Balancing Mechanism

New Balancing Services

Voltage Reduction – up to 500 MW

Maximum Generation – up to 250 MW

Emergency Services from interconnectors – up to 2000 MW (depending on direction and size of flows)

Controlled Disconnections

Actions that would take place during loss of load events

These actions have lower cost/value than £17/kWh

Cost of “energy unserved” = £17/kWh

Figure 12: Combined cost of energy unserved and procured capacity against capacity to procure

Amount to procure = 53.3 GW

But these cost less than £17/kWh

Source: National Grid (2014, p50)
Interconnectors and coupling - status 2014

GB coupled to NWE 4/2/14

Existing

Due 2016-19

SWE coupled to NWE 13/5/14
Interconnectors and capacity markets

- Interconnectors increase security of supply
 - provided they are free to respond to scarcity

 \Rightarrow they should displace **domestic reserve capacity**
 - Poyry estimates 50-80% for GB
 - France imported 9 GW at 2012 Feb stress moment

- EU Third Package aims at **Single Market**
 - Single auction platform for day ahead and intra-day

- But GB is aiming at **autarky** for capacity!

Reluctance to rely on imports \Rightarrow over-procure

 \Rightarrow reduce cross-border price differences
 \Rightarrow undermine interconnector investment
Trading with capacity markets

• Day-ahead supply and demand bids to Euphemia
 – Adjustments via intra-day and balancing
• Efficient capacity design drives out inefficient design if no price cap
 – If price reflects scarcity then willing to buy or sell
 • If not then face inefficiencies
 – But DA Euphemia capped at €3,000/MWh
• The key to efficient trade is how to ration at cap

Ensure spot price or allocation is efficient
⇒ hedge with Reliability Options
Optionality

- 2014 auction is for delivery in 2018/19
 - Allows time to build CCGT
- But information about future D & S uncertain
 - Especially DER and DSR

=> retaining flexibility has option value

- If planning and connections secured CCGT can be built in 2 years (2,000 MW Teeside in 27 months)
 - OCGTs can be built even faster

=> procure less now, more later
• Unstable policy environment and uncommercial low-carbon generation make investment risky
• Capacity markets can reduce investment risk
• GB capacity auction seems a good design
• Except that nervous politicians decide quantity

=> Amount procured seems excessive
 – Influenced by bogey of “Loss of Load”?
 – Ignores interconnectors and optionality of waiting

What solutions? What futures?
Problem

• National Grid is System Operator
 – Charged with security of supply

 and advises on capacity volume to procure

 ⇒ Advice to over-procure as consumers pay?

 ⇒ Politicians nervous about “lights going out”

• Would an ISO do better? What role for politicians?

Can we do without central capacity procurement?
Efficient pricing of electricity requires

Prices varying in response to S&D each second
- Australia has 5 minute pricing in real-time market
- Frequency response needed in 1-5 seconds
- Tender auctions may be cheaper than spot markets for some services
- Contracts needed to hedge risk and incentivise responses

Investment needs forward prices for 15-20+ years
- Or ability to predict confidently and hedge

Investment needed is either capital-intensive (low-C) or has low capacity factors for balancing intermittency = risky

How to allocate risk to incentivise and reduce cost
EU Standard Market Design?

- **Central dispatch in voluntary pool**
 - SO manages balancing, dispatch, wind forecasting
 - LMP + capacity payment = LoLP*(VoLL-LMP)
 - Hedged with reliability option (RO)
 => reference prices for CfDs, FTRs, balancing, trading

- **Auction/tender LT contracts for low-C generation**
 - Financed from state investment bank
 - Credible counterparty to LT contract, low interest rate
 - CfDs when controllable, FiTs when not, *or*
 - Capacity availability payment plus energy payment
 - Counterparty receives LMP, pays contract

- **Free entry of fossil generation, can bid for LT RO**
 - To address policy/market failures
Conclusions

• Low-C investment is durable and capital intensive
 – needs **stable credible future prices** to invest
 • and guaranteed contracts for cheap finance
• EU CO$_2$ policy is a messy 27-state compromise
 – neither stable nor credible
=> leave each country to choose its best solution
 – some mix of contracts and capacity markets
 – Ensure that cross-border trade permits efficient pricing
• Gains from cross-border trading higher with RES
 => share reserves, renewables to reduce investment

Autarky depresses prices, raises cost of RES support
Security of supply, UK Energy Policy and the Capacity Auction

David Newbery

BIEE International Conference
Oxford, 17th September 2014

http://www.eprg.group.cam.ac.uk
CCGT Combined cycle gas turbine
CfD Contract for difference
D & S Demand and Supply
DER Distributed Energy Resources
DSR Demand Side Response
EMR (UK) Electricity Market Reform
FiT Feed-in tariff
FTR Financial Transmission Right
ISO Independent System Operator
LMP Locational marginal price or nodal price
LoLE Loss of Load Expectation = sum of LoLP
LoLP Loss of Load probability
LT Long-term
NW E North west Europe
OCGT Open cycle gas turbine
RES Renewable energy supply
RO Reliability Option
SMD Standard Market Design (the US model)
SO System Operator
VOLL Value of Lost Load