

SMART TECHNOLOGIES IN THE SME AND DOMESTIC SECTORS: Evidence and policy options

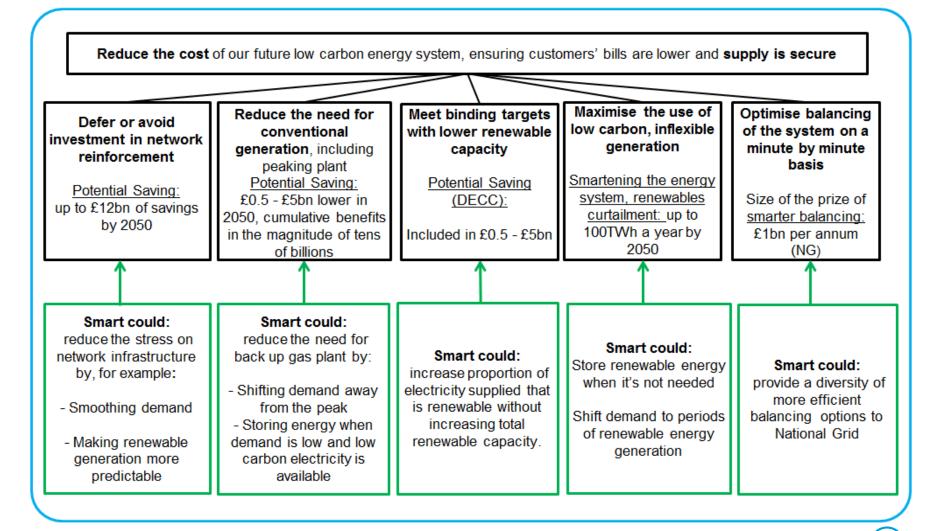
BIEE Annual Conference

Dr. Peter Warren Science and Innovation Email: peter.warren@beis.gov.uk

21-22nd September 2016

Presentation Outline

- 1) Definitions and importance of smart energy
- 2) Definitions and importance of small consumers
- 3) Current government research and policy on smart energy
- 4) Potential of smart technologies in SMEs
- 5) Potential of smart heating controls in the domestic sector
- 6) Conclusions


Department for Business, Energy & Industrial Strategy

1) Definitions and importance of smart energy

- Smart technologies refer to the increased use of information and communications technology based on signals, often linked to the internet
- Smart energy systems utilise these technologies to more efficiently manage the supply and demand of energy
- BEIS has a smart energy policy team supported by smart energy analysts, which focus on demand-side response, energy storage, smart appliances and smart energy innovation – a smart energy call-for-evidence will be published soon
- BEIS has a whole directorate allocated to the rollout of smart meters to all houses and SMEs by the end of 2020 to meet the EU's Directive 2009/72/EC

1) Definitions and importance of smart energy

OFFICIAL

2) Definitions and importance of small consumers

- BEIS uses the European Commission's definition of SMEs:
- Organisations with <250 employees and a turnover of ≤€50 million or a balance sheet total of ≤€43 million
- Micro = 0-9 employees, Small = 10-49 employees, Medium = 50-249 employees
- \succ However, definitions vary across the world

China:

Category	Employees	Turnover AND Total Asse						
Medium	≤2000	≤ RMB 300 m	≤ RMB 400 m					
Small	≤300	≤ RMB 30 m	≤ RMB 40 m					
USA:		New Zealan	d:					

Category	Employees	Category	Employees
SME	<500	SME	<20

India:

Category	Investment in Machinery
Medium	5-10 crore rupees
Small	25 lakh rupees – 5 crore rupees
Micro	≤25 lakh rupees

2) Definitions and importance of small consumers

Employment:

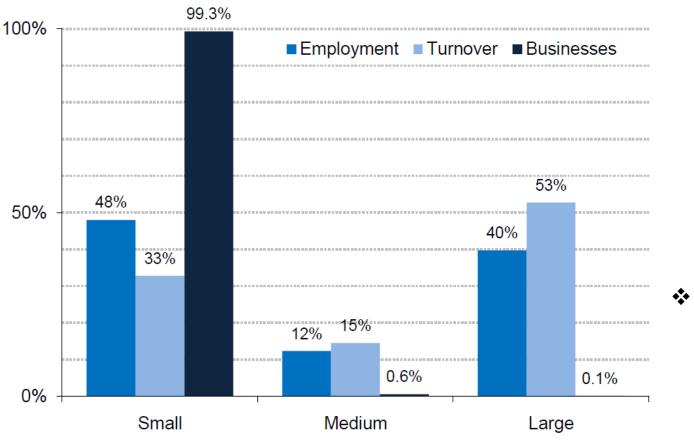
- 99% of enterprises globally are SMEs
- SMEs contribute to 60% of private sector employment globally

Economic growth:

SMEs contribute 16-80% of GDP depending on the country's economic structure (e.g. 30% of GDP in the European Union)

Energy consumption:

- 13% of global energy consumption
- 30% of global industrial energy consumption
- 25% of UK business energy consumption


Innovation:

- USA: SMEs carry out 20% of R&D and represent 35% of all transnational patents that are filed
- China: SMEs account for >60% of domestic patent applications
- Australia: SMEs represent 90% of the businesses engaging in innovative activity
- EU: SMEs carry out 20% of R&D

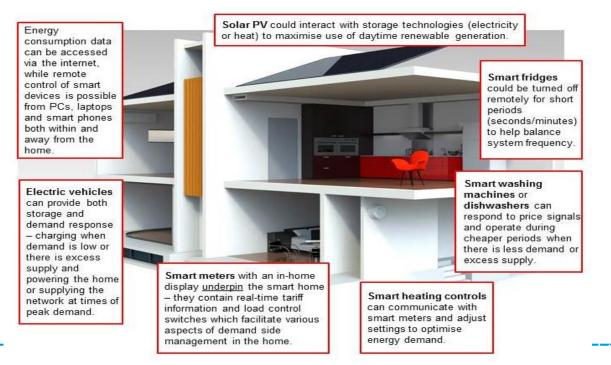
Department for Business, Energy & Industrial Strategy

2) Definitions and importance of small consumers

Contribution of different sized businesses to total population, employment & turnover in the UK (2015)

 Innovation: 50% of all patents are obtained by SMEs in the UK

2) Definitions and importance of small consumers


Sector	Number of SMEs	Share of total businesses (%)
Commercial Offices	1,761,471	33%
Construction	956,105	18%
Wholesale, Retail, Transport		
and Storage	795,935	15%
Arts and Other Services	591,020	11%
Human Health and Social Work		
Activities	370,632	7%
Manufacturing	274,463	5%
Education	267,550	5%
Accommodation and Food		
Services	182,447	3%
Agriculture, Forestry and		
Fishing	153,207	3%
Mining, Quarrying and Utilities	29,302	1%
Total	5,382,132	100%

2) Definitions and importance of small consumers

> **Domestic sector**:

- Represents 27% of UK greenhouse gas emissions (DECC, 2015)
- Historically UK policies have focused on energy efficiency and microgeneration – there is increasing policy interest in the role of smart technologies
- For example, the role of demand-side response, smart appliances, smart meters and the Connected Home

Department for Business, Energy & Industrial Strategy

3) Current government research and policy on smart energy

Vast amount of innovation and fast-evolving markets in smart technologies – thus, there is a crucial need for evidence on their potential energy and carbon savings, impacts on consumers and contribution to energy security

Forthcoming BEIS smart energy and small consumers research reports:

- Smart Energy Call for Evidence (to inform policies on demand-side response, energy storage, smart appliances and smart energy innovation)
- Business Energy Efficiency Survey (BEES)
- Small Business Survey
- Potential of Smart Technologies in SMEs
- Scoping Review of Heating Controls

Department for Business, Energy & Industrial Strategy

3) Current government research and policy on smart energy

Key barriers:

- Business priorities
- Upfront costs and perceived lack of finance (average £8,600-18,800 per SME)
- Split-incentives issues
- Lack of senior management engagement and commitment
- ✤ Lack of employee engagement and commitment
- Lack of relevant expertise (and finance to obtain expertise)
- Perception of limited savings from measures
- Challenges in quantifying and understanding financial savings (limited performance records)
- Payback period not a key barrier (1.5 years on average from measures)

Key success factor:

Engaging the CEO/General Manager (often directly deals with strategy, finance, facilities, human resources, etc.) – but how to do this from a government perspective?

Department for Business, Energy & Industrial Strategy

3) Current government research and policy on smart energy

Over the past year, BEIS has been working with Ofgem on a programme of work intended to manage the transition to a smart energy system:

Removing barriers to storage and DSR	 Clarify role of aggregators in the market, explore the need for policy intervention and regulatory oversight Consider barriers to ownership and utilisation of storage, and how to address these
Improving price signals	•Consider ways in which we can encourage consumers to offer their flexibility (e.g. half hourly settlement, smart appliances, etc)
Catalysing innovation	•Ensuring that DECC innovation funding supports those areas critical to the development of a smart energy system. We will also look at how innovation in this area can be supported best by the public sector more broadly.
Assessing changes to roles & responsibilities	•Considering what institutional and market frameworks may be required in a future smart energy system to maximise benefits while managing the risks; and how roles and responsibilities may need to change in light of these (e.g. from DNO to DSO).
Developing our analysis and evidence base	•Considering the costs and benefits in more detail; how much flexibility might be ' least regrets '; and identifying evidence gaps more broadly in this area.

4) Potential of smart technologies in SMEs

Aim	To estimate the potential savings for UK SMEs by better understanding the technical potential of smart technologies currently available to them
Method	 Quantitative top-down study building on the qualitative bottom-up barrier and drivers to energy efficiency in SMEs DECC study in 2014 Involved reviewing the quality and extent of publicly available evidence Energy savings potential estimates are based on estimates of energy expenditures and energy consumption (using turnover as a proxy) mapped onto estimates of the number of SMEs in non-domestic sectors in the UK See paper for full details
Data	 BIS Population Estimates (BIS, 2015) Energy Consumption in the UK (DECC, 2015) Digest of UK Energy Statistics (DECC, 2015)

Department for Business, Energy & Industrial Strategy

4) Potential of smart technologies in SMEs

	Industry (£m)	Domestic (£m)	Other final users (£m)	Total Expenditure (£m)
All businesses	12,715	33,435	79,875	126,025
SMEs (%)	38%	51%	61%	56%
SMEs	4,872	16,951	48,768	70,591

With 5,349,589 SMEs in the UK in 2015, average expenditure on energy was ~£9,227 per business but varies greatly by sector

Smart Technology	Max Saving (£mil)
Smart Heating Controls	£292m
Smart Meters	£526m
Integrated Building Management Systems (IBMS)	£935m
Smart Lighting Systems	£326m
Demand Responsive Energy Management	£216m
Big Data in Logistics and Transportation	£293m
Fleet Management	£6,051m
Total	£8,639m

Greatest energy savings potential from smart technologies by sector:

- Wholesale, Retail, Transport and Storage sectors (£3.0 billion savings)
- Education (£1.3 billion)
 - Accommodation and Food Services (£1.1 billion)
- Largely due to Fleet Management and IBMS

		Integrated building management systems	Smart lighting	Demand response	Smart heating controls	Big data in logistics and transportation	Fleet management	Smart Meters
Industry Segment	Scale							
Wholesale, Retail,	Micro				х			х
Transport and	Small		х		х	х	х	х
Storage	Medium	х	х	х		х	х	х
	Micro				х			х
Education	Small		х		х		х	х
	Medium	х	х	х			х	х
	Micro				х			х
Accommodation and Food Services	Small		х		х		х	х
	Medium	х	х	х			х	х

Greatest energy savings potential per SME: £12,369/year in Accommodation and Food Services

Source: BEIS (forthcoming) Potential of smart technologies in SMEs

5) Potential of smart heating controls in the domestic sector

Smart functionalities include:

- > Optimisation
- Learning algorithms
- Occupancy sensors
- Remote control through smartphones
- Automation
- Weather compensation
- Zonal control

Key players: Nest, Hive, Tado, Wave, Netatmo, Honeywell Evohome, Heat Genuis, Climote, Heatmiser Neo

Average costs: £200-250 including installation

5) Potential of smart heating controls in the domestic sector

Aim	To review the energy savings, cost-effectiveness and usability of different types of heating controls
Method	 Evidence review (using systematic techniques) of the UK evidence Quality of the evidence assessed See paper for full details
Data	 Academic databases Grey literature sources

5) Potential of smart heating controls in the domestic sector

OFFICIAL

Control Type	Energy Savings	Cost- effectiveness	Usability	Confidence	Control Type	Energy Savings	Cost- effectiveness	Usability	Confidence
Programmer/ timer (including digital)	Lack of robust evidence	Lack of robust evidence	Lack of robust evidence	N/A	Time Proportional	Large field trial. TPI in place of standard	Lack of robust		
Room	Single test. 12% gas saving compared to boiler thermostat only.	Lack of robust	Lack of	Vendow	Integral (TPI) controls	thermostat. No effect on efficiency of modulating condensing boilers	evidence	N/A	Good
thermostats	Unrealistic 'weather' and house temperatures	evidence	robust evidence	Very Low	Zonal control	Series of trials in one house. 12% gas saving compared to a	Acceptable payback for	Lack of robust	Modest
Thermostatic	Single test. 30% gas saving compared to room		Lack of			Building Regulations compliant system	cheaper systems	evidence	
Radiator Valves (TRV)	thermostat only. Unrealistic 'weather' and house	Lack of robust evidence	robust evidence	Very Low	Automation (including self- learning)	Two homes only. Learning zonal control 8%-18% gas saving	Lack of robust evidence	Lack of robust evidence	Very Low
Weather compensation	temperatures Lack of robust evidence	Lack of robust evidence	N/A	N/A	Remote control	Lack of robust evidence	Lack of robust evidence	Lack of robust evidence	N/A

> Limited evidence relating to the energy savings, cost-effectiveness and usability of heating controls

> Not just limited robust evidence but limited evidence generally

Quantitative evidence has been generated from models, test houses, individual occupied homes and largescale field trials of occupied homes

6) Conclusions

Smart Energy

BEIS is currently conducting research into smart energy systems and is gathering evidence on the energy and carbon savings, consumer impacts and contribution to energy security of smart technologies, such as demandside response (facilitated through the use of integrated building management systems), energy storage, smart meters, smart appliances (such as smart heating controls), amongst other innovative technologies. This will inform its future smart energy policies

Gathering Evidence

- The paper argues that smart technologies have the potential to have a positive impact on energy and carbon savings, consumer bills and energy security, but the evidence base needs to be significantly strengthened before smart energy policies are implemented
- This is to prevent unintended consequences, such as rebound effects (increased energy consumption), lack of consumer acceptance and negative market disruption (such as reduced competition)
- This is an area that is fostering large amounts of innovation that will have important impacts on the future energy system

Department for Business, Energy & Industrial Strategy

Questions/Comments?

Appendix: Potential of smart technologies in SMEs

OFFICIAL

Scenario	Number of SMEs	Smart Heating Controls	Smart Meters	Integrated Building Management Systems	Smart Lighting Systems	Demand Responsive Energy Management	Big Data in Logistics and Transportation	Fleet Management	Total
Accommodation and Food Service Activities	182,447	£35m	£57m	£73m	£33m	£17m	£0m	£865m	£1,081m
Agriculture, Forestry and Fishing	153,207	£24m	£33m	£18m	£17m	£4m	£0m	£432m	£527m
Arts and Other Services	591,020	£8m	£12m	£8m	£6m	£2m	£0m	£160m	£196m
Construction	956,105	£8m	£10m	£9m	£5m	£2m	£1m	£8m	£44m
Education	267,550	£46m	£72m	£83m	£41m	£19m	£0m	£1,06m8	£1,330m
Human Health and Social Work Activities	370,632	£25m	£42m	£58m	£25m	£13m	£0m	£645m	£808m
Manufacturing	274,463	£54m	£131m	£386m	£94m	£88m	£18m	£141m	£912m
Mining, Quarrying, and Utilities	29,302	£1m	£1m	£4m	£1m	£1m	£0m	£0m	£7m
Professional Services	1,761,471	£22m	£37m	£54m	£22m	£13m	£0m	£580m	£728m
Wholesale, Retail, Transport and Storage	795,935	£68m	£129m	£243m	£83m	£57m	£274m	£2,153m	£3,007m
Total	5,382,132	£292m	£526m	£935m	£326m	£216m	£293m	£6,051m	£8,639m

Arup analysis based on data from DECC, Energy Consumption in the United Kingdom (EC UK), 30 July 2015 and BIS Business Population Estimates 2015, 14 Oct 2015

