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Transport 2050 and hydrogen 

Based on insights, scenarios and modelling from Energy 2050 

• What will be the transport fuels and technologies of the future? 

• What are the prospects for the development of hydrogen vehicles? 

• What patterns of mobility do they imply? 

 

Bearing in mind that 

• Transport is part of a wider energy system 

• Scenarios are ways of exploring different futures under different sets of 

plausible assumptions 

• Models are ways of generating quantitative data for different scenarios 

 

Five minutes each on 

• Standard 2050 results 

• Results with accelerated hydrogen development 

• Results with transport markets segmented by journey length 
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Key potential developments 

• Hybridisation – petrol/electric; petrol/plug-in electric; 

battery/fuel cell 

• Electric vehicles and associated possibilities for grid 

management 

• Energy storage (synthetic fuels?) 

• Fuel cells – need for fuel generation (hydrogen?) 

• Biofuels – land use, quantity, sustainability 

• Infrastructure requirements, spatial implications 

• Transport behaviours 
– Personal mobility 

– Patterns of vehicle ownership 

• Energy system implications – need for and advantages of 

an energy systems model 



UCL ENERGY INSTITUTE UCL ENERGY INSTITUTE 

UK MARKAL 

• MARKet ALlocation dynamic optimization model 

• 100+ users in 30+ countries under IEA ETSAP network 

• A least cost optimization model based on life-cycle costs of 

competing technologies (to meet energy service demands)  

• Technology rich bottom-up model (e.g. end-use 

technologies, energy conversion technologies, refineries, 

resource supplies, infrastructure, etc) 

• An integrated energy systems model 

– Energy carriers, resources, processes, electricity/CHP, industry, 

services, residential, transport, agriculture 

• Range of physical, economic and policy constraints to 

represent UK energy system 

• In this presentation take strengths and weaknesses of 

MARKAL as read 
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Carbon targets and scenarios 

Scenario Scenario Name 
Annual targets 

(reduction) 
Cumulative 

targets  

Cum. emissions 
GTCO2 (2000-

2050) 

2050 
emissions 

MTCO2 

REF Reference - - 30.03 583.5 

CFH Faint-heart 
15% by 2020 
40% by 2050 

- 25.67 355.4 

CLC Low-carbon 
26% by 2020 
60% by 2050 

- 22.46 236.9 

CAM 
Ambition 

(Low-Carbon 
Core) 

26% by 2020 
80% by 2050 

- 20.39 118.5 

CSAM Super ambition 
32% by 2020 
90% by 2050 

- 17.98 59.2 

CEA Early action 
32% by 2020 
80% by 2050 

- 19.24 118.5 

CCP Least cost path 80% post 2050 
Budget (2010-
2050) similar to 

CEA 
19.24 67.1 

CCSP 
Socially optimal 
least cost path 

80% post 2050 
Budget (2010-
2050) similar to 

CEA 
19.24 178.6 

5 
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Carbon emissions 
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Sectoral carbon emissions 
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Sectoral energy demand 
[Road transport energy service demand goes from 488 bvkm in 2000 

to 740-780 bvkm in 2035 to 840-890 bvkm in 2050] 
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Transport sector energy demand 
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Transport fuel demand 
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Sectoral biomass/biofuel demand 
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Scenario conclusions 

• Fuels and technologies are very sensitive to 

assumptions about 

– Carbon reduction targets 

– Relative technology costs 

– Discount rates 

– Timescale (early/late action) 

• How much difference is made by accelerated 

technology development  (ATD) of hydrogen and 

fuel cells? 
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ATD – hydrogen and fuel cells 

• Obtain significant cost reduction of the H2 drivetrain 

– Component technology development and improvement of PEM and other types of fuel cells 

– Periphery components (air supply, humidification, valves, power and control electronics) 

– Onboard storage 

– Hydrogen ICE integration (including fuel cell APU and hybridisation) 

– System optimization 

• Obtain significant cost reduction of hydrogen production chains 
– Electrolysers, biomass gasification systems, CCS as well as standard components and 

instruments such as compressors, valves, sensors 

• System integration for hydrogen systems 
– Integration of main components (drivetrain, onboard storage) and auxiliary equipment (safety 

equipment, valves, electronics) for hydrogen transport applications 

– Integration of main components for stationary hydrogen applications 

– Integration of renewables and hydrogen in ‘island / remote’ systems 

– d) Use of current low pressure grid for transport of pure hydrogen 

• Assure safe and reliable hydrogen applications 

• Comply with long-term sustainability requirements 
– Hydrogen produced from renewable energy sources, fossil fuel with CCS or nuclear pathways 
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Cost reductions 
Hydrogen fuel cell Bus       

cost 2010 

2030 

CAM ATD 

Capital cost £M/bvkm 3618 2374 1182 

Capital cost £/vehicle 229901 150806 75098 

Fixed O&M£/v-km 0.447 0.249 0.249 

Hydrogen fuel cell Car       

cost 2010 

2030 

CAM ATD 

Capital cost £M/bvkm 2840 1084 847 

Capital cost £/vehicle 41124 15692 12267 

Fixed O&M£/v-km 0.210 0.090 0.034 



UCL ENERGY INSTITUTE UCL ENERGY INSTITUTE 

Fuel cell buses 
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Fuel cell cars 

16 



UCL ENERGY INSTITUTE UCL ENERGY INSTITUTE 

ATD Conclusions 

• Accelerated technology development demands 

public policy. What technologies to support, to 

what extent? 

• Infrastructure considerations (model assumes 

central pipeline and pipeline distribution network, 

but not detailed filling station hydrogen capability) 

• What about behaviours and patterns of mobility? 
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Transport behaviours (1) 

What are the implications of different patterns of consumer 

demand for vehicles? 
 

• Most scenarios examine a future in which consumers use cars much 

as they do today, as a multi-purpose vehicle for a wide variety of 

purposes 

• Using UK MARKAL 

– previous analysis uses one 'averaged' vehicle size 

– UK MARKAL, a least-cost optimisation model, gives limited 

insights regarding travel behaviour, no insights into modal 

switching 

• UK’s National Travel Survey gives demand data on journeys of 

different length; can generate different scenarios 
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Transport behaviours (2) 

• Split car transport energy service demand (i.e. bvkm) by vehicle size: 

different size vehicles have different characteristics, used in different 

ways; vehicle technologies have different relative performances for 

these demands; future technologies are applicable to specific size 

bands - e.g. unlikely to be large BEVs, as large vehicles tend to drive 

long distances and would require very large batteries, which are heavy 

and expensive, increasing cost and reducing efficiency 

• Allow independent consumer demands to exist for vehicles of different 

sizes e.g. large vehicles used for longer journeys, smaller vehicles 

used as urban 'run-abouts‘ 

• Scenarios give insights into future transport fuel use, relative 

importance of technologies within a specific demand, and synergies 

and trade-offs against other sectors 
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Preliminary results 
• Charts show transport demand (in billion vehicle kms) by car type.  

• Disaggregated vehicle demand gives smaller role to BEVs, larger roles to 

FCVs and PHEVs  

• Shows strong uptake of biofuels in both models, but late surge in BEVs in the 

average model and uptake of PHEVs (and a very small number of FCVs) in the 

differentiated model. 
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Results sensitive to biomass imports 

• We explored a sensitivity run in which no biomass imports are allowed 

• Notice here the big differences between the differentiated demand 

model and the average-only model. In the ‘disaggregated demand’ 

scenario, PHEVs and EVs dominate the ‘city run-around’ market, while 

H2FCVs dominate the market for large vehicles.  
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Conclusions from preliminary results 

• Transport technology choices are sensitive to assumed 

patterns of demand, particularly in more-stringent 

decarbonisation pathways.  

• These changes in the transport sector have significant 

impacts on the overall energy system: 

– Trade-off between biofuels (ICE) and biomass with CCS (BEV) 

– More hydrogen production 

• Electrolysis – requires larger electricity system 

• Gas SMR with CCS – more CCS infrastructure 

– Greater reliance on bio-fuel imports 

• Exposure to uncertainties surrounding sustainability and provenance 

of biofuels 

• Constraining biofuel imports has massive structural impact 



Thank You 

www.ucl.ac.uk/energy 


