Industrial Strategy and Public-Private Partnership under Severely Incomplete Information

Jian Tong

University of Southampton

June 21, 2017
Why not private sector alone?
Industrial Strategy and Public-Private Partnership

- Why not private sector alone?
- Market failure, e.g., externalities, coordination failure
Why not private sector alone?

Market failure, e.g., externalities, coordination failure

The hardest problem: missing market and missing market creator
Why not private sector alone?

Market failure, e.g., externalities, coordination failure

The hardest problem: missing market and missing market creator

- particularly relevant to technological upgrade and structural transformation
Industrial Strategy and Public-Private Partnership

- Why not private sector alone?
- Market failure, e.g., externalities, coordination failure
- The hardest problem: missing market and missing market creator
 - particularly relevant to technological upgrade and structural transformation
- Because of state power, government is well positioned to facilitate and capitalise on market creation
Industrial Strategy and Public-Private Partnership

- Why not private sector alone?
- Market failure, e.g., externalities, coordination failure
- The hardest problem: missing market and missing market creator
 - particularly relevant to technological upgrade and structural transformation
- Because of state power, government is well positioned to facilitate and capitalise on market creation
- Market failure and government intervention are not (all) sector neutral
Why not private sector alone?

Market failure, e.g., externalities, coordination failure

The hardest problem: missing market and missing market creator
 - particularly relevant to technological upgrade and structural transformation

Because of state power, government is well positioned to facilitate and capitalise on market creation

Market failure and government intervention are not (all) sector neutral
 - industrial strategy cannot be sector neutral
Why not public sector alone?
Why not public sector alone?

Centrally-planned command economy does not work economically

Consequence 1: inputs and direction of (micro-level) activities controlled by private firms

Consequence 2: informational asymmetry between private firm and government
Industrial Strategy and Public-Private Partnership

- Why not public sector alone?
- Centrally-planned command economy does not work economically
 - market prices—essential data (parameter) on exchange values
Industrial Strategy and Public-Private Partnership

- Why not public sector alone?
- Centrally-planned command economy does not work economically
 - market prices—essential data (parameter) on exchange values
- Consequence 1: inputs and direction of (micro-level) activities controlled by private firms
Industrial Strategy and Public-Private Partnership

- Why not public sector alone?
- Centrally-planned command economy does not work economically
 - market prices—essential data (parameter) on exchange values
- Consequence 1: inputs and direction of (micro-level) activities controlled by private firms
- Consequence 2: informational asymmetry between private firm and government
Innovation, trial-and-error and uncertainty
Uncertainty and Severely Incomplete Information

- Innovation, trial-and-error and uncertainty
 - the “when” uncertainty

Tong (University of Southampton)
Innovation, trial-and-error and uncertainty

- the “when” uncertainty
- the “if” uncertainty—is this a dead-end?
Uncertainty and Severely Incomplete Information

- Innovation, trial-and-error and uncertainty
 - the “when” uncertainty
 - the “if” uncertainty—is this a dead-end?
- Picking winners and dropping losers
Uncertainty and Severely Incomplete Information

- Innovation, trial-and-error and uncertainty
 - the “when” uncertainty
 - the “if” uncertainty—is this a dead-end?
- Picking winners and dropping losers
 - judging losers: private vs. social criterion
Innovation, trial-and-error and uncertainty
- the “when” uncertainty
- the “if” uncertainty—is this a dead-end?

Picking winners and dropping losers
- judging losers: private vs. social criterion

Type 1 mistake: dropping a potential winner too early—market failure
Uncertainty and Severely Incomplete Information

- Innovation, trial-and-error and uncertainty
 - the “when” uncertainty
 - the “if” uncertainty—is this a dead-end?

- Picking winners and dropping losers
 - judging losers: private vs. social criterion

- Type 1 mistake: dropping a potential winner too early—market failure
- Type 2 mistake: dropping a probable “loser” too late—a policy pitfall
Inputs and direction of (micro-level) activities are controlled by private firms

Undeserving rent-seeking should be prevented

The design of the incentive scheme needs to be robust to the (severe) information constraints
Inputs and direction of (micro-level) activities are controlled by private firms.

- The government has no (or limited) control.
Inputs and direction of (micro-level) activities are controlled by private firms

- the government has no (or limited) control
- the government has no (or limited) access to the private information
Inputs and direction of (micro-level) activities are controlled by private firms

- the government has no (or limited) control
- the government has no (or limited) access to the private information

The goal of the public-private partnership has to be induced by suitable policy instruments.
Inputs and direction of (micro-level) activities are controlled by private firms
- the government has no (or limited) control
- the government has no (or limited) access to the private information

The goal of the public-private partnership has to be induced by suitable policy instruments

Undeserving rent-seeking should be prevented
Inputs and direction of (micro-level) activities are controlled by private firms
- the government has no (or limited) control
- the government has no (or limited) access to the private information

The goal of the public-private partnership has to be induced by suitable policy instruments

Undeserving rent-seeking should be prevented

The design of the incentive scheme needs to be robust to the (severe) information constraints
An innovation project—will create a new market if successful
A Model Example—Subsidy of Innovation Project

- An innovation project—will create a new market if successful
- Inputs and direction of the innovation are controlled by a private firm—entrepreneur and investors
A Model Example—Subsidy of Innovation Project

- An innovation project—will create a new market if successful
- Inputs and direction of the innovation are controlled by a private firm—entrepreneur and investors
- Private benefit—net firm profit, producer surplus—is Π_F
A Model Example—Subsidy of Innovation Project

- An innovation project—will create a new market if successful
- Inputs and direction of the innovation are controlled by a private firm—entrepreneur and investors
- Private benefit—net firm profit, producer surplus—is Π_F
- Benefit to others in the nation—consumer surplus, better paid jobs, corporate and income taxes—is Π_G
A Model Example—Subsidy of Innovation Project

- An innovation project—will create a new market if successful
- Inputs and direction of the innovation are controlled by a private firm—entrepreneur and investors
- Private benefit—net firm profit, producer surplus—is Π_F
- Benefit to others in the nation—consumer surplus, better paid jobs, corporate and income taxes—is Π_G
- Success is uncertain:
A Model Example—Subsidy of Innovation Project

- An innovation project—will create a new market if successful
- Inputs and direction of the innovation are controlled by a private firm—entrepreneur and investors
- Private benefit—net firm profit, producer surplus—is Π_F
- Benefit to others in the nation—consumer surplus, better paid jobs, corporate and income taxes—is Π_G
- Success is uncertain:
 - the “when” uncertainty—prob. of success (per period) is λ
An innovation project—will create a new market if successful
Inputs and direction of the innovation are controlled by a private firm—entrepreneur and investors
Private benefit—net firm profit, producer surplus—is Π_F
Benefit to others in the nation—consumer surplus, better paid jobs, corporate and income taxes—is Π_G
Success is uncertain:
- the “when” uncertainty—prob. of success (per period) is λ
- the if “uncertainty”—prior prob. of “non-dead-end” is p_0
An innovation project—will create a new market if successful

Inputs and direction of the innovation are controlled by a private firm—entrepreneur and investors

Private benefit—net firm profit, producer surplus—is Π_F

Benefit to others in the nation—consumer surplus, better paid jobs, corporate and income taxes—is Π_G

Success is uncertain:

- the “when” uncertainty—prob. of success (per period) is λ
- the if “uncertainty”—prior prob. of “non-dead-end” is p_0

The cost of investment is αk for (per period) investment $k \in [0, 1]$
Picking Winners, Dropping “Losers”

- If investment in the trial-and-error innovation occurs and succeeds, a **winner** is born—or picked
Picking Winners, Dropping “Losers”

- If investment in the trial-and-error innovation occurs and succeeds, a winner is born—or picked
- If investment in the experiment goes on without success, the suspicion of a dead-end rises
Picking Winners, Dropping “Losers”

- If investment in the trial-and-error innovation occurs and succeeds, a winner is born—or picked.
- If investment in the experiment goes on without success, the suspicion of a dead-end rises.
 - the posterior probability of project viability decreases in cumulative investment K

$$p(K, p_0) = \frac{p_0 e^{-\lambda K}}{1 - p_0 + p_0 e^{-\lambda K}}$$
Picking Winners, Dropping "Losers"

- If investment in the trial-and-error innovation occurs and succeeds, a **winner** is born—or picked
- If investment in the experiment goes on without success, the suspicion of a dead-end rises
 - the posterior probability of project viability decreases in cumulative investment K
 \[p(K, p_0) = \frac{p_0 e^{-\lambda K}}{1 - p_0 + p_0 e^{-\lambda K}} \]
- By private criterion, a project is dropped as a "loser" if and only if
 \[p(K, p_0) < p^F \triangleq \frac{\alpha}{\lambda \Pi_F} \]
If investment in the trial-and-error innovation occurs and succeeds, a winner is born—or picked.

If investment in the experiment goes on without success, the suspicion of a dead-end rises:

- The posterior probability of project viability decreases in cumulative investment K

\[p(K, p_0) = \frac{p_0 e^{-\lambda K}}{1 - p_0 + p_0 e^{-\lambda K}} \]

- By private criterion, a project is dropped as a “loser” if and only if

\[p(K, p_0) < p^F \triangleq \frac{\alpha}{\lambda \Pi_F} \]

- By social criterion, a project is dropped as a “loser” if and only if

\[p(K, p_0) < p^* \triangleq \frac{\alpha}{\lambda (\Pi_F + \Pi_G)} < p^F \]
Mark failure: dropping a **potential winner** too early—projects with $p \in (p^*, p^F)$ are dropped without intervention.
Mark failure: dropping a **potential winner** too early—projects with $p \in (p^*, p^F)$ are dropped without intervention.

Government can intervene.
Picking Winners, Dropping “Losers”

- Mark failure: dropping a **potential winner** too early—projects with \(p \in (p^*, p^F) \) are dropped without intervention.
- Government can intervene
 - e.g., using a matching subsidy \(S(k) = \phi \alpha k \), for \(\phi \in [0, 1] \).
Mark failure: dropping a **potential winner** too early—projects with $p \in (p^*, p^F)$ are dropped without intervention.

- Government can intervene
 - e.g., using a matching subsidy $S(k) = \phi k$, for $\phi \in [0, 1]$
 - the subsidy function $S(k)$ in general is a policy choice
Picking Winners, Dropping “Losers”

- Mark failure: dropping a potential winner too early—projects with $p \in (p^*, p^F)$ are dropped without intervention.
- Government can intervene:
 - e.g., using a matching subsidy $S(k) = \phi \alpha k$, for $\phi \in [0, 1]$
 - the subsidy function $S(k)$ in general is a policy choice.
- For every pound of subsidy transferred to the firm, there is γ pounds extra shadow cost to the public fund.
Mark failure: dropping a **potential winner** too early—projects with $p \in (p^*, p^F)$ are dropped without intervention

Government can intervene

- e.g., using a matching subsidy $S(k) = \phi \alpha k$, for $\phi \in [0, 1]$
- the subsidy function $S(k)$ in general is a policy choice

For every pound of subsidy transferred to the firm, there is γ pounds extra shadow cost to the public fund

p_0 is private info to the firm; the government faces Knightian uncertainty, or ambiguity
Mark failure: dropping a potential winner too early—projects with \(p \in (p^*, p^F) \) are dropped without intervention.

Government can intervene:
- e.g., using a matching subsidy \(S(k) = \phi \alpha k \), for \(\phi \in [0, 1] \)
- the subsidy function \(S(k) \) in general is a policy choice

For every pound of subsidy transferred to the firm, there is \(\gamma \) pounds extra shadow cost to the public fund.

\(p_0 \) is private info to the firm; the government faces Knightian uncertainty, or ambiguity.
- subsidy \(S(k) \) cannot depend on \(p_0 \)
Mark failure: dropping a potential winner too early—projects with $p \in (p^*, p^F)$ are dropped without intervention.

Government can intervene:

- e.g., using a matching subsidy $S(k) = \phi \alpha k$, for $\phi \in [0, 1]$
- the subsidy function $S(k)$ in general is a policy choice

For every pound of subsidy transferred to the firm, there is γ pounds extra shadow cost to the public fund.

p_0 is private info to the firm; the government faces Knightian uncertainty, or ambiguity.

- subsidy $S(k)$ cannot depend on p_0
- government uses the max-min objective function to evaluate policy.
Criterion under PPP: a project is dropped as a “loser” if and only if

\[p(K, p_0) < p^{**} \triangleq \frac{\alpha}{\lambda \left(\Pi_F + \frac{\Pi_G}{1+\gamma} \right)} \in \left(p^*, p^F \right) \]
Optimal Policy under the PPP

Criterion under PPP: a project is dropped as a “loser” if and only if

\[p(K, p_0) < p^{**} \triangleq \frac{\alpha}{\lambda \left(\Pi_F + \frac{\Pi_G}{1+\gamma} \right)} \in (p^*, p^F) \]

The matching subsidy that can implement this criterion has

\[\phi^{**} = \frac{\frac{\Pi_G}{1+\gamma}}{\Pi_F + \frac{\Pi_G}{1+\gamma}} \]

or

Cost share = Benefit share
Dropping a probable "loser" too late is a policy mistake—inefficient
Dropping a **probable “loser”** too late is a policy mistake—inefficient

- e.g., matching subsidy with $\phi > \phi^{**}$ is bad policy
Policy Mistakes to Avoid

- Dropping a **probable “loser”** too late is a policy mistake—inefficient
 - e.g., matching subsidy with $\phi > \phi^{**}$ is bad policy
- Bad policies can also induce non-deserving rent-seeking behaviour
Policy Mistakes to Avoid

- Dropping a **probable “loser”** too late is a policy mistake—inefficient
 - e.g., matching subsidy with $\phi > \phi^{**}$ is bad policy
- Bad policies can also induce non-deserving rent-seeking behaviour
 - e.g., policy $S(z) = \alpha z$ (for some $z < 1$) may induce $k = z < 1$—an investment slow-down
Policy Mistakes to Avoid

- Dropping a **probable “loser”** too late is a policy mistake—inefficient
 - e.g., matching subsidy with $\phi > \phi^{**}$ is bad policy
- Bad policies can also induce non-deserving rent-seeking behaviour
 - e.g., policy $S(z) = \alpha z$ (for some $z < 1$) may induce $k = z < 1$—an investment slow-down
 - and get stuck with a “loser” and a “perpetual” subsidy
Dropping a **probable “loser”** too late is a policy mistake—inefficient

- e.g., matching subsidy with $\phi > \phi^{**}$ is bad policy

Bad policies can also induce non-deserving rent-seeking behaviour

- e.g., policy $S(z) = \alpha z$ (for some $z < 1$) may induce $k = z < 1$—an investment slow-down
- and get stuck with a “loser” and a “perpetual” subsidy

But, bad policies are not inevitable!