

Third Party Access to Infrastructure and The Future Recovery of Oil And Gas Reserves In The UKCS

Alexander Kemp, Euan Phimister, Linda Stephen

Aberdeen Centre for Research in Energy Economics and Finance, Business School, University of Aberdeen

> 9th BIEE Academic Conference Oxford, September 2012

> > Work in Progress

UK Continental Shelf

Mature Province Typical Remaining Fields Small

Operator structure changed New Developments Small/Medium E&P Companies

Access to Existing Infrastructure •Transport System •Hubs - Processing

Existing Infrastructure Ageing Industry Key Access to Hubs Processing

Third Party Access - Regulatory framework Negotiations - Field Developers & Infrastructure Owners •Industry's Infrastructure Code of Practice (ICoP)

•If negotiations fail - DECC can intervene - "Determination".

Current Industry Review – Oil & Gas UK

Field Developers

- •Delays Infrastructure owners prioritize own developments
- •Terms Extraction of Field Rents

Infrastructure Owners – emphasise access costs Two referrals to DECC - No Determinations

Improvements to Infrastructure Code of Practice Full Unbundling & Regulation (Onshore electricity/gas network)

Could changes affect exploitation remaining UKCS resources ?

Potential Market Failures: Hub Access & Access Pricing

Ownership Structure

Local Monopoly Power

Indivisibilities (Ginsburgh & Keyzer, 1997)

Vertically Integrated Hub Owners (Armstrong, Doyle & Vickers, 1996) – Prioritizing Own Production

Information asymmetries

Modelling Aim Impact of Ownership Structure & Indivisibilities

Mixed Integer Programming Model

Maximizes the Post Tax NPV of area production

Finding optimal set of new developments Tiebacks from fields to hubs Timings of hub and field shutdown

Hubs Treated as Entry Point to Transportation System

Basic Tax Corporation Tax + Supplementary Charge + Allowances

Explore

Single Ownership - First best solution Impact separation of infrastructure and field ownership Negotiation Delays Unbundling + Non Discriminatory Pricing

Case Study Area: Northern North Sea

70 fields and potential developments

- 34 "sanctioned"/existing fields, 36 probable/possible/technical.
- 12 hubs (and sub-hubs) identified

Data

Hub & field location - GIS data available from DECC and CDA DEAL + Assumptions.

Field database based on OGUK data (Kemp & Stephen) Each (potential) development) profiles 2010-2050 Expected oil and gas production Real capital expenditure Operating and abandonment costs, and pre-tax revenues

Values exclude tariff revenue. Assumed prices: Oil - \$90/bbl, Gas - 60p/therm. **Base Model -** *"as if"* single operator for NNS Standard MIP Approach, e.g.

Production at Hub = Sum Field Production Tie-backed to Hub

$$yo_{ht} = \sum_{i \in D} \overline{tiep}_{ih} . to_{iht}$$

Tieback Production to Hub Forces Tieback Active $to_{iht} + tg_{iht} \le M.tb_{iht}$

 $tb_{iht}(binary) = 1$ if Tieback Field to Hub Active

Activate New Tieback

 $tbs_{iht} \ge tb_{iht} - tb_{iht-1}$ $tbs_{iht}(binary) = 1$ Tieback Activated (Fixed Cost Incurred)

Similar Constraints Hub & field shutdown/Decom Cost

Hubcfr – Base + individual financial constraints field/hub

Split ownership structure across fields/hubs implies basic economic viability individual elements.

Cost Shares introduced Contributions by Fields to Hubs Opex

Hub - Sum of *Cost Shares* paid by Tie in Field = Hub Opex

Field – NPV of future net cash flow (*ncf*) non-negative each year $\sum_{\tau \in T} \frac{1}{(1+r)^{\tau-t}} . ncf_{i\tau} \ge 0,$

Hubcfr 3 year delay – Hubcfr with 3 year delay all potential developments.

Ad hoc Potential costs of negotiation delays

Unitpr-Hubcfr with implicit price paid per boe at each hub same for all tiebacks

Extreme Non-discriminatory pricing with Hubs unbundled?

Restrictions on Cost Shares

 cs_{iht} Cost Share Field to Hub Operating Costs Period t

*uch*_{*iht*} Unit Cost Contribution by Field to Hub Operating Costs

$$cs_{iht} = uch_{iht}$$
. (TieBack Volume in BOE)

Integer Constraints ensure

 $uch_{iht} = 0$ if TieBack Not active

 $uch_{iht} = up_{ht}$ if TieBack Active

For Each Active Hub

Cost Share paid each Tie back = HubPrice*Volume

Single HubPrice for Each Hub (different prices across hubs and time)

Indivisibilities Impact

HubPrice – Dependent on which Fields Tie-backs.

Which Fields Tie-backs – Dependent on HubPrice

Model Results

	Base	Hubcfr	Hubcfr 3 year delay	Unitpr
Post Tax NNS NPV £m	7982.4	7889.8	6662.6	3261.4
Tax NPV £m	6861.1	7321.5	6776.0	5496.7
No New Developments				
(out of possible 36)	29	30	30	23
Total Number of				
Production Periods	663	682	676	471

Model Results

	Base	Hubcfr	Hubcfr 3 year delay	Unitpr			
Year Hub Decommissioned*							
Cormorant	2014	2020	2025	2017			
Alwyn North	2031	2031	2031	2013			
Brent	2022	2020	2011	2011			
Eider	2016	2016	2011	2011			
Dunlin	2042	2042	2045	2034			
Tern	2023	2023	2023	2021			
Dunbar	2027	2025	2025	2016			
Thistle	2032	2031	2031	2031			
Ninian	2034	2034	2033	2011			
Heather	2038	2038	2041	2020			
Magnus	2026	2026	2026	2013			
Murchison	2017	2017	2017	2016			

*Note these are simulated model outcomes only.

Figure 1 NNS Oil Production Thousand Barrels per Day (tb/d)

Figure 2: NNS Gas Production Million Cubic Feet per Day (mmcfd)

Figure 3 Non-Discriminatory Pricing Scenario (Unitpr): Unit Hub Prices 2011 £/boe

Figure 4 Non-Discriminatory Pricing Scenario (Unitpr): Unit Hub Prices by Year

Summary & Conclusions

Ownership differences some reduction Province NPV. Hub viability constraints – Mixed Impact shutdown date Cost of delay is high - mostly postponement Difficulty applying "extreme" non-discriminatory pricing regime – variable field costs.

Caveats

No modelling individual firms behaviour/bilateral bargaining No risk and uncertainty Timing of new field developments Multipart Tariffs

Should UK Government Enhance negotiated settlements efficiency or Instigate full regulation?

Thank you for your attention