The Effects of Royalties on Oil and Gas Production

Clinton J. Levitt
Department of Economics
Copenhagen Business School

BIEE 2010

Objective

- Understand the effect royalties have on oil and gas production:
(1) Tilting?
(2) High-grading?
(3) Government revenue?
(1) Exploration rates?
(© Geographic distribution of exploration?
- In this presentation, I focus on exploration.

How?

- Estimate a structural model of oil and gas production that includes both exploration and extraction.
- Construct a firm-level panel consisting of decisions made 700 firms concerning over 350,000 wells.
(1) How much to explore.
(2) Where to explore.
(3) extraction rates-monthly volumes from 1975 to 2006.
- Construct a pool-level panel of over 40,000 pools.
(1) Construct Reserves estimates for each firm.
(2) Estimate field specific costs.

Idea

Firm's Decision Problem

- The firm maximizes discounted future profits,

$$
\max _{q_{t}, w_{t}} \mathrm{E}\left[\sum_{t=0}^{\infty} \beta^{t}\left[\tilde{p}_{t} q_{t}-c\left(q_{t}, R_{t}\right)-d\left(w_{t}\right)\right] \mid \Omega_{t}\right]
$$

subject to 2 transition equations:
(1) Reserves:

$$
R_{t+1}=\left(R_{t}-q_{t}\right)+f\left(w_{t}, W_{t}\right)
$$

(2) Wells:

$$
W_{t+1}=W_{t}+w_{t}
$$

and a resource constraint
©

$$
q_{t} \leq R_{t} .
$$

Bellman Equation

- The corresponding Bellman equation is

$$
v(p, R, W)=\max _{q, w}\left\{\tilde{p} q-c(q, R)-d(w)+\beta \mathrm{E}\left[v\left(p^{\prime}, R^{\prime}, W^{\prime}\right) \mid \Omega_{t}\right]\right\}
$$

- Subject to the law of motion for reserves,

$$
R^{\prime}=(R-q)+f(w, W)
$$

and the law of motion for the total number of wells drilled,

$$
W^{\prime}=W+w
$$

Euler Equations

- Euler equation for extraction:

$$
\tilde{p}-\frac{\partial c(q, R)}{\partial q}=\beta \mathrm{E}\left[\left.\left(\tilde{p}^{\prime}-\frac{\partial c\left(q^{\prime}, R^{\prime}\right)}{\partial q^{\prime}}\right)-\frac{\partial c\left(q^{\prime}, R^{\prime}\right)}{\partial R^{\prime}} \right\rvert\, \Omega_{t}\right] .
$$

Euler Equations

- Euler equation for reserve production

$$
\begin{aligned}
\left(\tilde{p}-\frac{\partial c(q, R)}{\partial q}\right) & \frac{\partial f(w, W)}{\partial w}-\frac{\partial d(w)}{\partial w} \\
& =\beta \mathrm{E}\left[\left.\frac{\partial f\left(w^{\prime}, W^{\prime}\right)}{\partial w^{\prime}}\left(\tilde{p}^{\prime}-\frac{\partial c\left(q^{\prime}, R^{\prime}\right)}{\partial q^{\prime}}\right)-\frac{\partial d\left(w^{\prime}\right)}{\partial w^{\prime}} \right\rvert\, \Omega_{t}\right] .
\end{aligned}
$$

Empirical Model

- Reserve Production Function:

$$
f\left(w_{t}, W_{t}\right)=\Gamma\left[1-\exp \left(-\gamma \frac{w_{t}}{1+W_{t}}\right)\right]
$$

Reserve Production

Empirical Model

- Lifting Costs:

$$
c\left(q_{t}\right)=\alpha_{0} q_{t}+\alpha_{1} \frac{1}{2} q_{t}^{2}+\alpha_{2} R_{t}
$$

- Drilling Costs:

$$
d\left(w_{t}\right)=\tau_{1} w_{t}+\frac{1}{2} \tau_{2} w_{t}^{2} .
$$

- Prices:

$$
p_{t+1}=a_{0}+a_{1} p_{t}+u_{t} \quad u_{t} \sim N\left(0, \sigma^{2}\right)
$$

Empirical Problem

- The empirical problem is to estimate the parameter vector for each of the K fields:

$$
\mathbf{\Phi}=\left[\Gamma, \gamma, \tau_{1}, \tau_{2}, \alpha_{0}, \alpha_{1}, \alpha_{2}, a_{0}, a_{1}, \sigma^{2}\right]
$$

Estimator

- The GMM estimates of $\boldsymbol{\Phi}$ are obtained by choosing $\tilde{\boldsymbol{\Phi}}$ that minimizes the vector function

$$
\mathbf{S}=\left[\sum_{\mathbf{i}=1}^{\mathbf{N}} \mathbf{z}_{\mathbf{i}}^{\prime} \mathbf{M}_{\mathbf{i}}(\mathbf{X} ; \tilde{\Phi})\right]^{\prime} \tilde{\Omega}_{\mathbf{i}}\left[\sum_{\mathbf{1}=\mathbf{1}}^{\mathbf{N}} \mathbf{z}_{\mathbf{i}}^{\prime} \mathbf{M}_{\mathbf{t}}(\mathbf{X} ; \tilde{\Phi})\right]
$$

where $\tilde{\boldsymbol{\Omega}}$ is a weighting matrix and $M_{t}(X ; \tilde{\boldsymbol{\Phi}})$ is

$$
\mathbf{M}_{i}\left(\mathbf{X}_{t} ; \boldsymbol{\Phi}\right)=\left(\begin{array}{cc}
\mathbf{m}_{1 t}\left(\mathbf{X}_{t} ; \boldsymbol{\Phi}\right) & \mathbf{0} \\
\mathbf{0} & \mathbf{m}_{2 t}\left(\mathbf{X}_{t} ; \boldsymbol{\Phi}\right)
\end{array}\right) .
$$

Preliminary Results: Lifting Costs

- Map illustrating estimated lifting costs evaluated at field-specific means

Preliminary Results: Drilling Costs

- Map illustrating estimated drilling costs evaluated at field-specific means

Policy Functions: Exploration Wells

High Price

Policy Functions: Volume

High Price

Policy Simulation: Mean of the Parameter Estimates

Percent fncrease	Number of Exp. Wells	Percentage Change
0	12663	0
1	12575	-0.88
2	12444	-1.73
4	11848	-6.44
6	11382	-10.12
8	11103	-12.32
10	11008	-13.07

Policy Simulation: Low Cost and High Volume Fields

Percent fncrease	Number of Exp. Wells	Percentage Change
0	24212	0
1	22999	-5.01
2	24932	2.97
4	22575	-6.76
6	22667	-6.38
8	22635	-6.51
10	22316	-7.83

Policy Simulation: High Cost and Low Volume Fields

Percent fncrease	Number of Exp. Wells	Percentage Change
0	507	0
1	486	-4.14
2	508	0.20
4	516	1.78
6	541	6.71
8	488	-3.75
10	512	0.99

Policy Simulation: High Reserve Production Fields (high γ and Γ)

Percent Increase	Number Exp.	
0	15582	Percentage Change
1	15580	0
2	15562	0
4	15529	-0.001
6	15498	-0.003
8	15458	-0.005
10	15312	-0.017

Thanks for your attention

