

Imperial Centre for Energy Policy and Technology

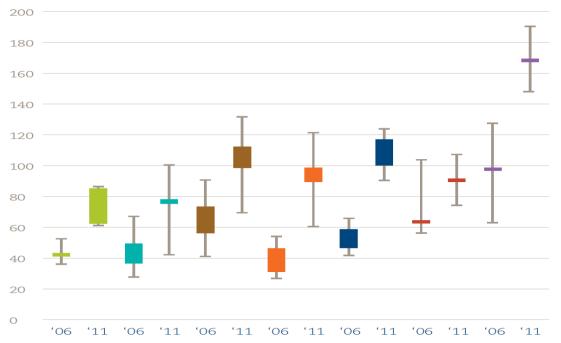
Presenting the Future

An assessment of future costs estimation methodologies in the electricity generation sector

BIEE SEMINAR – IMPLICATIONS FOR WIND POWER

Robert Gross, Phil Heptonstall, Imperial College and UKERC

The TPA remit and approach


- A core function of the UKERC since 2004
- Provide independent, policy-relevant assessments addressing key issues and controversies in energy
- Develop accessible, credible and authoritative reports relevant to policymakers, other stakeholders and wider public debate
- Approach based on a systematic search and appraisal of the evidence base, synthesis, and expert and peer review

The context

Figure 2.3: Comparison of 2006 and 2011 cost estimates⁶

2011 £/MWh

Technology

Nuclear	Coal + CCS
CCGT	Onshore Wind
CCGT + CCS	Offshore Wind
Coal	

UKERC

'Presenting the future' Preliminary questions from scoping note

- How do past estimates and expectations of future costs compare with experience to date?
- Do methodologies differ in terms of their forecasting accuracy?
- Have methodological approaches changed?
- How robust are future costs estimation methodologies?
- How susceptible are the different approaches to exogenous factors?
- What are the strengths and weaknesses of the methodologies?

Why estimates matter

- Key input to policy:
 - Successive Energy White Papers
 - Stern Review
 - CCC Renewable Energy Review
 - Energy system models such as MARKAL/TIMES
- Help identify which technologies merit support (and how much)
- Policy can also bear upon costs, which bear upon policy...

Approach

- Systematic review of the literature on cost estimation and forecasting methodologies
- Six technology case studies:
 - Nuclear
 - Combined Cycle Gas Turbine (CCGT)
 - Coal and Gas-fired Carbon Capture & Storage (CCS)
 - Solar Photovoltaics (PV)
 - Onshore Wind
 - Offshore Wind

Available at:

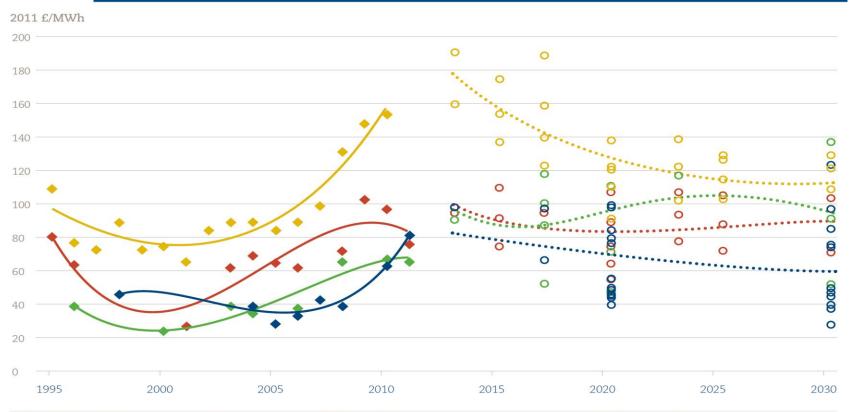
http://www.ukerc.ac.uk/support/tiki-index.php?page_ref_id=2863

Synthesis and conclusions

Forecasting future costs: Methods and approaches

• Experience curves:

- Grounded in empirical observations that learning and cost reductions do happen
- Can help identify the level of investment and deployment required to drive down costs but...
- Are susceptible to uncertainties over selection of the correct starting point, learning and deployment rates
- Concern over the use of proxy values from similar technologies
- May be more applicable to some technology characteristics than others (modular vs. large-scale)
- Can be overwhelmed by other factors


Forecasting future costs: methods and approaches

- Engineering assessment (and expert elicitation, stakeholder workshops, etc.):
 - Can inform detailed parametric models
 - Don't need to rely on previous trends
 - Can allow for discontinuities, but...
 - Expert opinions can differ
 - May suffer manipulation / excessive optimism
 - Still difficult to get right for emerging technologies

UKERC

Cost trajectories – LCOE

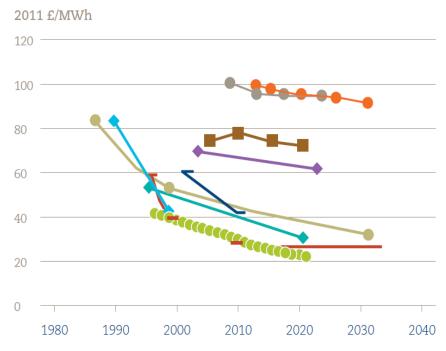
Figure 2.4: Range of LCOE estimates, in-year mean and UK-specific forecasts

- Onshore wind, contemporary estimates
- ♦ CCGT, contemporary estimates
- Offshore wind, contemporary estimates
- Nuclear contemporary estimates
- Onshore wind, contemporary estimates
- CCGT, contemporary estimates

- Offshore wind, contemporary estimates
- Nuclear contemporary estimates
- Onshore wind, forecasts
- O CCGT, forecasts
- Offshore winds, forecasts
- O Nuclear, forecasts

- •••• Onshore wind, forecasts
- ···· CCGT, forecasts
- ···· Offshore winds, forecasts
- ···· Nuclear, forecasts

The case studies


- Nuclear
- Combined Cycle Gas Turbine (CCGT)
- Coal and Gas-fired Carbon Capture & Storage (CCS)
- Onshore Wind
- Offshore Wind
- Solar Photovoltaics (PV)

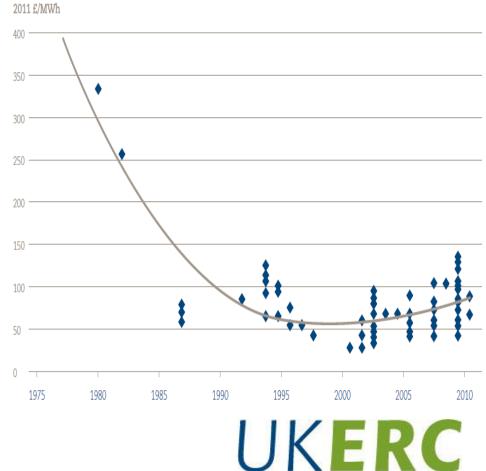

Onshore Wind

Figure 4.8: Range of levelised cost expectations for onshore wind

Figure 4.10: Range of levelised costs of onshore wind since 1980

Parsons Brinckerhoff (2004)	IEA (2003)
Neji (1999)	DoE/EPRI (1997)
DTI/E&Y (2007)	IEA (1993)
Flavin and Lenssen (1990)	Mott MacDonald (2010)
EWEA/Greenpeace (1999)	DECC (2012)

Offshore wind

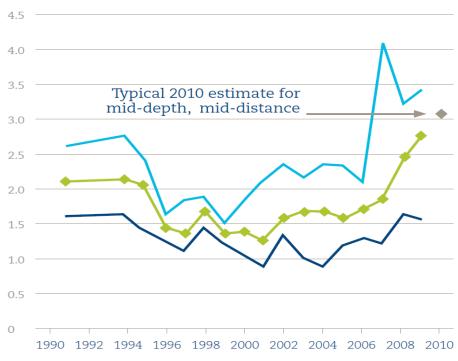

Figure 4.11: In-years means of offshore wind forecast capex, comparing pre and post 2005 estimates 2009 £m/MW 4.5 -4.0 -0 ----1990 2000 2010 2020 2030 2040 2050

Figure 4.12: Range of offshore wind actual capex, 1990 to 2009

2009 £m/MW

In-year Min

In-year Max

UK**ERC**

Forecast made up to 2005
Forecast made from 2005 onwards.

Methodological themes

Issues arising from the collection, presentation, interpretation and comparison of cost data and forecasts:

- Continued appraisal optimism
- Technology and deployment immaturity
- Dependence on, and sensitivity to, input data
- Price as proxy for cost
- Compound learning systems
- Appraisal realism
- Variability of estimates and forecasts

Endogenous themes

Relate to learning effects and innovation, scale effects and standardisation, and technological, commercial and regulatory conditions within the sphere of influence of relevant actors:

- Learning effects
- Barriers to learning
- Economies of scale
- Standardisation
- Project duration
- Country and market environment
- Policy environment
- Regulatory environment
- Physical environment

Exogenous themes

Cost issues that are largely beyond the ability of either the actors involved in a generating technology or policymakers more generally to influence or mitigate them:

- Commodity and labour costs
- Feedstock prices
- Interest rates and financing costs
- Exchange rates
- Exogenous policy effects

Conclusions

- Clear empirical evidence that the cost of electricity generation can fall through time and as deployment rises learning happens. But
 - learning is not inevitable and quality of projection a product of data, assumptions, judgement, etc...
 - learning can be overwhelmed by other factors temptation to focus on potential for cost reductions risks ignoring prosaic issues such as supply chain constraints
 - Initial roll-out of a technology may result in short-term bottlenecks, 'teething trouble' and other issues -short term costs may rise before they can fall
- Some of the uncertainties revealed by the case studies are exogenous, inherently unpredictable and may exhibit high volatility what to do about these?
- Some of the endogenous cost drivers are more 'known' and lend themselves more readily to future projection but this is not always well done
- One size does not fill all technology specifics are paramount to cost reduction prospects. Small, mass produced and modular = 'better' at learning?
- Communication of uncertainty is key. There is a trend towards improved 'appraisal realism' in recent analyses

UK Energy Research Centre +44 (0)20 7594 1574 www.ukerc.ac.uk

robert.gross@imperial.ac.uk

philip.heptonstall@imperial.ac.uk

