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Abstract 

The merit order stack is used to tackle a wide variety of problems involving electricity dispatch: 

assessing the impact of new technologies on prices and carbon emissions, or looking at the 

optimal investment in new capacity.  The simplification it relies upon is to neglect dynamic 

constraints such as start-up penalties, energy storage, minimum stable loads, reserve 

requirements and maximum ramp rates. 

We demonstrate a non-linear optimised dispatch algorithm and compare it to the merit order stack 

approach, using the GB system in 2020 as an example.  We find that two constraints (start-up 

costs and minimum output levels) are the greatest source of error: the merit order stack under-

estimates the optimal level of investment in both peaking plant and inflexible baseload generators, 

and thus their run-times by up to 30%. 

A simple heuristic can be applied to the data on plant costs to account for start-ups, which reduces 

this error by a factor of two.  This enables the benefits of the merit order stack (speed, simplicity 

and transparency) to hold in more dynamic and intermittent simulations. 

 

Introduction 

The UK’s plans for decarbonisation assume that by 2030, a very high proportion of electricity will 

come from low-carbon generators, and that in the following decades, electricity will be used to 

meet a high proportion of the demand for transport and heat.  The need to balance these much 

higher demands against the generation from inflexible sources raises many technical issues, and 

comprehensive engineering models are needed to address them.  For example, Strbac et al. 

(2012) model the electricity system in detail to ask how much storage capacity might be needed by 

2030, and whether it should be placed closer to generators (saving on transmission capacity) or to 

loads (saving on distribution capacity).  In a similar vein, deciding whether an interconnector from 

Norway should connect to the UK system in Scotland or in Lincolnshire, for example, requires 

extensive modelling of the flows on the transmission system. 

At the same time, the shift to a low-carbon energy system raises many economic issues. What are 

the consequences (for prices and for investment incentives) of adding 30 GW of wind to a system 

with a peak demand of 60 GW?  What value should we place on increased interconnection with 

our neighbours?  How will capital-intensive new build fare in a more volatile marketplace? Can a 

market that pays only for energy deliver sufficient peaking plant?  Many of these questions depend 

on uncertain variables such as fossil fuel prices.  Sometimes, a complex model can be solved for a 

few representative scenarios, but finding the distribution of a peaking station’s profits requires a 
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model to be run many times.  To avoid the computational burden of repeatedly running a full 

engineering model, economists frequently use simplified approaches.  Finding an intuitive 

explanation for the link between inputs and outputs is often also easier with a simplified model. 

One of the economist’s workhorse models for linking generators’ capacity and costs with their 

outputs and electricity prices is the so-called merit order stack.  This ranks power stations in order 

of increasing variable cost, and always selects the cheapest available stations to meet demand.  

Investment decisions are made to minimise the sum of variable and fixed costs.  This approach 

ignores the growing role that dynamic constraints will have on determining the optimal capacity 

mix.  Plant start-ups and shut-downs, limits on ramp-rates and energy storage are three issues that 

cannot be incorporated into a simple merit order stack, and require a dynamic dispatch model with 

high temporal resolution.  

To test the impact of these dynamic constraints, we demonstrate a non-linear dispatch optimiser 

coupled with a long-run investment model.  This finds the operating pattern that gives the minimum 

annual cost of generation, and the mix of plants such that each type covers its costs, leaving no 

further opportunities for profitable entry to the market.  A representation of the 2020 GB electricity 

system is used to explore the capabilities of this model relative to a merit order stack.  Using these 

models, we ask how far the various non-linear constraints change the operating patterns for 

different plant, and the extent to which this would change the optimal plant mix. 

Furthermore, we propose a relatively simple extension to the merit order stack model, modifying 

the input cost parameters to account for the expected number of plant starts per year.  The impact 

of this extension on results is quantified, and limitations to its applicability are explored. 

 

Background 

The electricity industry has a long history of using sophisticated models to plan its investment and 

operating decisions.  The Central Electricity Generating Board in England and Wales, for example, 

used one model to plan the operation of its power stations, contingent on their fuel costs, and 

iterated these results against a model of the coal industry and its transport costs to allocate the 

coal from particular mines to each power station (MMC, 1981).  In operational timescales, when 

plant are being dispatched, it is vital to take account of constraints such as the time required for a 

station to start and limits on the speed with which it can change its output, and the CEGB used a 

computer programme known as GOAL (Generator Ordering And Loading) to do so.  

For decisions made over longer timescales, these operating constraints may be less important, 

and simpler models can be appropriate.  In particular, the problem of minimising the sum of 

investment and operating costs can be seen as the solution to a linear program, in which those 

costs are the objective function and the constraints require that the output from every power station 

is always less than its own capacity, and collectively equal to demand in each period.  For such a 

model, known as a generator stack model, the stations with the lowest variable costs are used 

most intensively, running whenever demand exceeds the capacity of stations with equal or lower 

variable costs.  Investment decisions are made by trading off fixed and variable costs, choosing 

plants with low variable costs when long running hours are expected, and those with low fixed 

costs if they are only needed to meet peak demands for short periods.   

The underlying paradigm is that the sensible candidate plants for investment have the same 

ordering, whether ranked in order of increasing fixed costs or decreasing variable costs.  A station 

with higher fixed costs, compared to some alternative, would only be a worthwhile investment if 

these were offset by lower variable costs and if the station was expected to operate for long 
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enough for this to bring its total costs below those of the other option.  A screening curve – the 

upper panel of Figure 1 – shows how the total costs (per kW of capacity per year) for three 

investment candidates vary with the amount of power they produce.  The slope of each line shows 

the variable costs of that plant type, while its fixed costs are given by the vertical intercept.  

Peaking plants are cheapest if only a few operating hours are needed, while baseload plants have 

the lowest costs if power is needed throughout the year.  The positions of the lines in this figure are 

illustrative; more details of the model are given in Stoft (2002) or Kirschen and Strbac (2004). 

 

Figure 1: Merit order stack model (stylised) 

 

The lower panel of Figure 1 shows how the model selects generator capacities.  The load-duration 

curve ranks the levels of demand in each hour of the year, from highest to lowest.  The chosen 

capacities of each plant type are stacked up against the load-duration curve, placing those with the 

lowest variable costs (the baseload plants) at the bottom.  The more stations of a given type that 

are built, the fewer the hours that the least intensively used of them will be needed in.  With the 

correct mix of stations, this number of hours is the number for which that type of station has the 

same total costs (fixed and variable) as the type with the next highest variable costs.  Deviating 

from this mix of capacity would increase the total costs.  For example, building an additional 

baseload station would mean replacing a mid-merit station that would have lower total costs for its 

operating pattern; building one fewer would imply that a mid-merit station was required to run for a 

number of hours where a baseload plant would have been cheaper. 

The model described so far would require sufficient generating capacity to meet even the highest 

demand, even though some of that capacity would be used for only a few hours a year, which is 
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unlikely to be economic.  Traditional models allowed the demand constraint to be violated in a 

(very) small number of hours per year, equivalent to the reliability standard imposed on electric 

utilities.  As an alternative, an option to reduce peak demands by shedding load can be introduced, 

as a kind of generation with a variable cost equal to the Value of Lost Load (VOLL).  This cost 

should be set to a level which makes its widespread use unattractive.  A third variant is to introduce 

price-sensitive demand, either through specific blocks of demand reduction that can be called off at 

particular prices or by making the level of demand in each hour a function of the market price.  

That market price is then set to the variable cost of the most expensive plant in operation or to the 

level needed to ration demand to the generation available at that price. 

Merit order stack models have often been used by economists to simulate electricity prices in this 

way.  For example, Joskow and Kahn (2002) and Borenstein et al. (2002) estimated the level of 

prices during the California electricity crisis assuming competitive (price-taking) behaviour and 

compared them with the (much higher) out-turn.  Borenstein et al. took advantage of the relative 

simplicity of the merit order stack approach to run their model 100 times with different random plant 

outages, thus capturing the non-linear relationship between available capacity and prices.  The 

merit order stack approach to costs also underlies the supply function approach used by Green 

and Newbery (1992) to study market power, and by Green and Vasilakos (2010) to model the 

impact of wind power on wholesale prices. 

Merit order stack models can also be used to study questions related to investment.  Borenstein 

(2005) uses a model of this kind to assess the benefits of introducing real-time electricity pricing in 

California, calculating the reduction in overall capacity and the change in wholesale price patterns 

that this would bring about.  A number of papers have studied the impact of the large-scale 

introduction of renewable generators on investment in conventional plants – these include Lamont 

(2008), Usaola et al. (2009) and Bushnell (2010).     

Mills and Wiser (2012) go beyond the merit order stack when they calculate the marginal value of 

wind power and of different kinds of solar power (with and without energy storage) at different 

penetration levels, calibrated for a scenario of California in 2030.  Their model combines a long-

term investment equilibrium and a short-term dispatch that takes account of operational 

constraints.  Similarly, Strbac et al. (2012) calculate the value and optimal capacity of electricity 

storage for the UK in a low carbon 2030 scenario, using a simultaneous optimisation of investment 

and operation decisions, subject to plant- and network-level constraints. 

These engineering approaches take account of many more constraints than the merit order stack, 

but involve much more complexity, making them less suitable for large-scale repeated simulations.  

We wish to test the impact of this complexity on the results obtained from a model of Great Britain 

in the 2020s. 

 

Optimised Dispatch Model 

We demonstrate a generic, non-linear optimised dispatch model written in the GAMS language and 

controlled by a web interface.  The model consists of several classes of power station that are 

dispatched to meet a set of time-varying demands so as to minimise the cost of generation.  

Equally, the model could be used to maximise profits (simulating an unregulated monopolist), 

maximise welfare (benevolent planner) or minimise carbon emissions (environmentalist).  The 

model copes with relatively large problems, optimising a fleet of 20 plant types over 8,760 hours of 

demand in around 20 minutes on a standard workstation (3 GHz, 4 GB RAM).  Monte Carlo trials 

and multi-dimensional sensitivity studies can be conducted using the web interface. 
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Once plant characteristics, demand data and economic information are supplied, the model 

optimises the scheduling and output of plants subject to the following constraints: 

 Demand, plus a reserve margin, must be served by the operating plants; failure to do so 

incurs penalties due to curtailing supply (spilling wind) or demand (charged at the value of 

lost load (VOLL)); 

 Price sensitive demand is modelled with several tranches of consumers (usually large 

industrial users) that are able to reduce load in return for a scarcity price (which is above 

the industry’s typical marginal cost but below VOLL); 

 Plants have a minimum stable output below which they must shut down.  Restarting the 

plant incurs a cost and time penalty; 

 Plants have minimum uptime and downtimes, and maximum rates of change in output; 

 Plants have reduced efficiency when operating part loaded. 

 Hydro and pumped storage are subject to availability constraints due to water levels; 
 

The model finds the short-run equilibrium – how to best operate a given set of plants so as to 

minimise the total cost of generation.  Long-run equilibrium – the capacity of plants that would be 

best to build – is found when the profits of each type of plant are closest to zero, and so there is no 

incentive for new capacity to open or for existing capacity to retire. 

GAMS is not capable of performing nested optimisations (a model within a model), so an additional 

layer is required to find the long-run equilibrium.  The web interface is used to conduct a simple 

iterative search: testing a set of plants, refining the levels of capacity based on their profits, then 

testing the new set of plants – until convergence is achieved.  When considering a brown-field 

scenario (where existing plant operates alongside potential new plant) there is the constraint that 

the level of old plant (which has already been paid for) cannot be increased. 

This model is similar to those demonstrated by Mills and Wiser (2012) and Strbac et al. (2012), and 

is available from the authors under the Creative Commons licence.  

 

Data for UK Electricity in 2020 

The model relies on five sets of data: the capacities, technical limitations and costs of each type of 

generator, plus time series of demand and output from wind generators. 

 

Plant Data 

We consider four types of renewable and seven types of controllable thermal generation, which are 

listed in Table 1 in order of merit (increasing marginal cost).  The unit and total capacities are 

initially calibrated to the GB electricity system in 2010, except wind capacity which we project will 

increase from 7 GW in 2012 to 30 GW in 2020, in line with projections by RenewableUK (Green 

and Staffell, 2012). 

Thermal plants operate with an availability of 85%, which is evenly distributed over the whole year.  

Wind output is modelled explicitly using a profile of resource availability, while hydro output is 

optimised, subject to the constraint of water availability, giving annual load factors of 42% and 15% 

for run-of-river and pumped hydro respectively.  

Based on data from US generators (Bushnell and Wolfram, 2005), we assume that plant efficiency 

scales linearly with output, falling 6% from full to minimum output (for coal, OCGT and oil) or 16% 

(for CCGT and nuclear).  When running partly loaded, the average generating efficiency of thermal 
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plants are therefore lower than given in Table 2; however, the incremental efficiency (increase in 

power output from an increase in fuel input) is higher. 
 

 

Unit 
Capacity 

(MW) 

Installed 
Capacity 

(MW) 

Average 
Net 

Efficiency 
(%) 

Minimum 
Stable 

Generation 

Cold Start 
Time 

(hours) 

Wind (onshore) –   11,000 –    0% –  

Wind (offshore) –   19,000 –    0% –  

Nuclear 500 11,000 35.1% 75% 96 

Coal (large) 525 25,725 40.1% 50% 4 

Coal (small) 250 3,250 36.7% 50% 3.5 

CCGT (large) 750 23,250 56.9% 50% 2 

CCGT (small) 350 8,400 51.2% 50% 1.5 

OCGT 30 2,340 32.3% 10% 0.1 

Oil 50 4,000 30.8% 10% 0.1 

Hydro –   1,360 –    0% –  

Pumped Storage –   2,828 77.4% 0% –  

Table 1: Technical parameters for the power stations in our model 

 

Cost Data 

Plant costs were derived from five major studies: Mott MacDonald (2010), Parsons Brinckerhoff 

(2011) and Arup (2011) specific to the UK; plus IEA (2010) and EIA (2010) internationally.  We 

aggregated their projections to 2020 or thereabouts for annualised capital investment cost (defined 

as the annual rent required to cover overnight capital cost plus interest over the lifetime of the 

plant), fixed and variable operating costs, and thermal efficiencies.  Fuel costs are based on 

DECC’s central scenario for 2020, which equated to £7.94 for coal, £37.07 for oil, and £23.37 for 

gas (per MWh of fuel).  Carbon emissions are priced at £30 per tonne, which is the floor price 

established for 2020 under the government’s carbon price support scheme (HM Treasury, 2011). 

No-load costs are derived from the intercept of total fuel cost against plant output, and represent 

the penalty of decreasing part-load efficiency.  Start-up costs are derived from the cost of fuel 

required to heat the generator to temperature plus the cost of the carbon emitted.  The wear and 

tear caused by start-ups is not factored in; however, this could increase the start-up cost 

significantly (Rosnes, 2008).  Shut-downs are considered to incur zero cost.  
 

 

Annualised 
Capital Cost 
(£/kW-year) 

No-load 
Cost 
(£/h) 

Start-up 
Cost 

(£/plant) 

Incremental 
Fuel + Carbon 
Cost (£/MWh) 

Total Fixed 
Cost 

(£/kW-year) 

Total 
Variable 

Cost 
(£/MWh) 

Nuclear 401 320 4,000,000 3.35 + 0.00 470 5.00 

Coal (large) 207 620 142,500 18.62 + 25.84 240 47.78 

Coal (small) 245 320 72,000 20.34 + 28.24 278 52.02 

CCGT (large) 85 4,900 32,500 34.52 + 10.77 103 53.25 

CCGT (small) 107 2,550 11,000 38.39 + 11.97 125 59.06 

OCGT 58 130 270 68.12 + 18.99 72 93.30 

Oil 146 360 470 113.07 + 27.23 188 149.27 

Table 2: Economic parameters for power stations in our model 
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The last two columns of Table 2 summarise our cost data: the fixed cost consists of the annualised 

capital cost and fixed operation and maintenance (O&M) costs; marginal cost consists of fuel, 

carbon and variable O&M. 

For this set of simulations we searched for a so-called “greenfield” solution; a long-run equilibrium 

assuming that there was no existing plant.  The model can also accommodate a brownfield 

scenario when existing plant only has to cover its operating and maintenance costs, on the basis 

that the costs of past investments are already sunk. 

 

Demand Data 

Our hourly time-series of demand data was produced from half-hourly figures published by the 

National Grid for the period 1994–2011 (National Grid, 2011).  We scale up this historic demand to 

hypothetical 2020 levels, assuming that demand will grow by 0.7% annually to give a total of 350 

TWh per year.  Historic demands are increased by the ratio of 350 TWh to their annual weather-

corrected demand; in other words, we preserve hour-to-hour and year-to-year variation due to 

weather, while removing fluctuations due to the level of economic activity.  The linear scale factors 

that we use do not reflect changing patterns in the underlying demand due to de-industrialisation 

and the potential electrification of heating and transport demands, so the system peak and 

minimum demands therefore also scale linearly to 64.6 and 22.7 GW respectively.  

 

Wind Resource 

The time-series output of wind generators was estimated using the methodology presented in 

Green and Vasilakos (2010) and Green and Staffell (2012).  We obtained hourly observations of 

wind speed from the UK Meteorological Service (2006), collected from 120 weather stations 

between 1994 and 2011.  Around 3% of the observations were missing or corrupt, and were filled 

using interpolation, regression and Markov-chain simulation. 

Fleets of wind farms composed of 16 leading turbine models were stochastically allocated to each 

region, and the power curves from these turbines were mapped onto wind speeds to give the 

expected energy yield and load factor for each region.  Wind speeds were adjusted to account for 

the fact that wind farms and weather stations have different hub heights, and reduced by 10% for 

onshore regions to give a mean load factor of 26% – matching the historic output of UK turbines.  

Offshore wind speeds were provisionally inferred from coastal locations, as none of the MIDAS 

stations were deployed at sea, and so were increased by 10% to give an average load factor of 

36%.  We expect that new speed measurements from Round 3 offshore sites will soon be made 

available, and will incorporate them into our data set.  The diurnal variation in wind output was 

reduced to match historical observations, as detailed in Green et al., (2011).   

The final data set contained hourly load factors for GB, which closely resemble the pattern and 

distribution of actual output from transmission connected turbines in the UK.  Figure 2 compares 

the spread in our estimated load factors with historical output derived from Elexon data and 

Renewables Obligation Certificate (ROC) submissions. 
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Figure 2: The distribution of monthly average load factor across the 120 wind sites, comparing 
simulation (shaded areas) with measured historical output (lines). 

 

Extending the Merit Order Stack 

The time required to run a full dispatch model on a year of data makes it unsuitable for many 

economic applications.  One alternative is to use the dispatch model on a representative sample of 

days; Green et al. (2011) show how clustering techniques can be used to create these.  Another is 

to use a full dispatch model to obtain more information on how the stations at each place in the 

merit order will be used, work out what this means for their costs, and then adjust the screening 

curve accordingly (Batlle and Rodilla, 2012).  We propose a simpler method of extending the merit 

order stack to consider the cost of plant starts and the scheduling of hydro resources.   

 

Plant Start Costs 

We take a simple approach to estimate the number of start-ups that each plant will undergo: any 

time national load rises above a certain value, Q, we assume the Qth plant must start up.  Figure 3 

demonstrates this simple algorithm, showing how many times a plant must start at different 

positions within the stack.  Using the UK as an example, the number of starts per year is highest 

for mid-merit plant which must run for around 3,000 or 5,500 hours per year.  

 

Figure 3: Demonstrating a simple algorithm for calculating the number of start-ups for different 
levels of plant. 
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This simple algorithm neglects the fact that it is often cheaper to reduce the power output of 

several plant than to shut down a single plant, and so will most likely over-estimate the number of 

start-ups.  A more sophisticated algorithm that accounts for generator’s decision making processes 

could be used in its place to gain better results. 

The profile of start-ups against cumulative capacity will change over time as the level of demand 

changes, or if different (larger or smaller) countries are considered.  We find that mapping the 

number of starts against the number of running hours gives a much more consistent profile over 

time and between countries.  In order to find this relationship, the load duration curve can be used 

to map the number of GW of plant to the number of hours that plant is required for, just as when 

constructing a screening curve. 

The plot to the right of Figure 3 shows this transformation with the 2011 GB data.  The plant that is 

only required for one hour of the year (the 56.1st GW) need only start once to cover the very 

highest peak demand.  Similarly, all plants that can run for 8760 hours (the first 21.4 GW) do not 

have to start up (except for maintenance).  Moving from these extremes to the mid-merit plants, 

which are required for 3,000–6,000 hours, the number of starts increases to approximately one per 

day. 

By considering the number of starts against the number of hours per year the plant must run, we 

enable this method to be translated easily to systems other than the UK.  Figure 4 demonstrates 

this similarity for the GB system over the last 18 years (when demand has grown 18% then fallen 

9%); and in an American market over the last 32 years (when demand grew by over 50%).  While 

the shape of this curve appears to be relatively consistent within a country over time, it shows more 

marked differences between countries due to the different extents of electric heating and pumped 

hydro storage employed. 

 

 

Figure 4: Average number of plant start-ups for the GB system from 1994–2011 (left), and for the New 
England system from 1980–2011 (right).  Individual years’ data is shown in blue, with the period 
average highlighted in red. 

By combining the plant start-up costs (Table 2) with the average number of starts per year, the 

total annual cost of starts can be calculated for each plant type at each point within the merit stack.   
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Hydro scheduling 

The British electricity market also includes 4.1 GW of hydro plant, which is scheduled by the GAMS 

model so that the energy available is sold at the most valuable times.  2.75 GW is pumped storage 

hydro, replenished every night; 1.36 GW is run-of-river hydro with an energy constraints which bind 

over a longer time period – we assume an annual constraint.  In our merit order stack model, we 

pre-treat the demand data with a peak-lopping algorithm, as used by Borenstein and Bushnell 

(1999) to model California.   We start by choosing a (different) level of demand for each day at 

which pumped storage hydro stations start to run, reducing the net demand towards this level by 

as much as their capacity allows.  The level of demand is chosen so that the total energy used by 

the pumped storage plants during the day is equal to their average daily generation over the year, 

(9.9 GWh).  After the daily optimisation is completed, we choose a similar demand level at which 

the run-of-river hydro starts to run, peak-lopping so that the available 4,945 GWh of energy is 

consumed over the year as a whole.  Figure 5 demonstrates this algorithm in action: the first day 

has a short-lived peak and there are hours in which the full power capacity (measured in GW) of 

the pumped storage plants is used; the second day has a flatter peak and the full energy capacity 

(GWh) can be used without using the full power capacity (GW).  Run-of-river hydro begins to 

operate at the same level during both days, as the energy constraint is not applied to each day 

separately. 

 

Figure 5: Demonstration of the heuristic for allocating hydro resource. 
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minus £50/MWh, implicitly the foregone subsidy which wind stations would require as 

compensation.   

The third pair of models both included start-up costs, while the GAMS dispatch model also 

included the cost of running plants at no-load, with a corresponding reduction in the cost per MWh 

of output actually produced (as the marginal efficiency is higher than the average). 

 

Capacity mix 

As seen in Figure 6, the long-run equilibrium capacity mix calculated by each variant of the two 

models was remarkably similar.  The greatest deviation with the simple merit order stack was that it 

overestimated the optimal CCGT capacity by 2.5 GW, relative to the fully optimised dispatch result. 

 

Figure 6: Optimal capacity mixes calculated by each model. 

 

Adding a minimum stable generation for nuclear plant had the expected effect: the added cost of 

spilling wind meant that marginal nuclear plant could no longer compete against CCGT, so the 

capacity of nuclear plant fell by 2 GW with both the stack and dispatch models.  The reduction in 

nuclear capacity was met almost equally by increases in CCGT and OCGT. 

Adding the cost of start-ups reversed these changes: CCGT capacity was squeezed at both ends 

of the stack as it had the higher ratio of start-up cost to incremental cost2, and so nuclear capacity 

increased by 2 GW and OCGT by 1 GW.   

The impact of adding these constraints to the dispatch model was very similar as to the stack 

model, and so the net result of adding minimum stable generations and start-up costs was the 

same as for the stack model.  The full dispatch model’s result featured 1 fewer nuclear plant (500 

MW) and 300 MW more OCGT capacity than the stack model with constraints.  This missing 

capacity was made up for by increased load shedding, which peaked at 1.1 GW instead of 0.9 GW. 

 

                                                
2
 In the case of nuclear plant, the cost of curtailing wind output was lower relative to operating costs (as this 
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Outputs 

The constraints and modelling methods had more noticeable impacts on the levels of plant output, 

as plant run times were affected by their position within the stack (in addition to the changes in 

capacity).  Table 3 shows the energy outputs predicted by three of the model runs.  It shows that 

the corrections for nuclear minimum output and start-up costs improve the accuracy of the basic 

stack model approximately two-fold. 

 

 Full dispatch 
Stack + Minimum + 

Starts Simple Stack 

Nuclear  192.7 TWh  198.6 (+3%)  177.5 (–8%) 
CCGT  86.4 TWh  81.4 (–6%)  102.6 (19%) 
OCGT  5.0 TWh  4.4 (–11%)  3.6 (–28%) 
Wind spilling  –1.8 TWh  –2.0 (+15%)  –1.2 (–30%) 
Load shedding  –80 GWh  79 (–1%)  79 (–1%) 

Table 3: Comparison of plant outputs for different modelling methods, highlighting the deviation 
from the fully optimised results (in parentheses). 

The greatest deviations from the fully optimised result were at the extremities of the stack: the level 

of wind spilling at the bottom and the levels of OCGT output at the top.  In all cases, the amount of 

load shedding was very similar by design, as it was determined primarily by the total amount of 

physical capacity installed. 

 

Prices 

The impact of operating constraints is also prevalent in the prices produced by these models.  

Figure 7 plots the price duration curve from two of the stack models and the full dispatch model, 

revealing key differences in their treatment of plant start-ups.  

 

Figure 7: Price-duration curves for three of the models. 
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The vertical (or near vertical) segments of the price duration curve indicate transitions between 

different types of plant being marginal, OCGT and CCGT are marginal at approximately £100 and 

£50/MWh respectively, for example.  The full dispatch model suggests that OCGT are marginal for 

30% longer than the stack models, due to the slightly higher capacity installed and longer run-

times.  The transition points from CCGT to nuclear and to wind shedding are correctly predicted by 

the stack model when minimum outputs and start-up costs are accounted for. 

In the simple merit order stack, price is determined solely by the incremental cost of the marginal 

plant, ignoring start-up costs.  Its price duration curve therefore consists of long horizontal 

segments, when OCGT, CCGT and nuclear are marginal.  

The modification for adding start-up costs to the stack works by allocating the cost of a start-up 

equally across all the hours that plant is generating.  The horizontal sections of that model’s curve 

therefore have a slight downwards slope to them, as there become more hours to spread the cost 

of these starts over.   

The dispatch model shows a yet more complicated structure, as start-up costs are allocated only to 

the hours that necessitated the start-up.  From 1,500 to 3,000 hours the marginal cost of CCGT is 

therefore higher than the incremental cost (£53.25/MWh).  Conversely, in hours of lower demand 

during a trough (from 5,500 hours onwards) the cost of avoiding a start-up is seen, depressing the 

marginal price of CCGT below its incremental cost.   

The behaviour of the three models can be seen more clearly in Figure 8. 

 

Figure 8: A sample of the price over time calculated by three of the models. 
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Conclusions 

We test a merit order stack against a fully optimised dispatch model, looking at the long-run 

equilibrium capacity mix and electricity prices.  The importance of two major constraints is 

highlighted: the minimum output of nuclear reactors, and the cost penalty of starting up plants.  

We look at a simple method of factoring start-up costs into the merit order stack, requiring only is 

information on plant costs and the load profile.  By inflating the cost of mid-merit plants, start-up 

costs move the crossover points at which OCGT or nuclear plant become the lowest cost 

generator, increasing the shares of these plant in the long run equilibrium mix.  These changes are 

replicated in the price duration curve, enabling the modified stack model to approach the results of 

the fully optimised dispatch model. 

We aim to improve the accuracy of the stack model further by allocating the start-up cost of a plant 

to specific hours of peak demand (the ones which made the start-up necessary), and by 

considering avoided start-ups in the night-time troughs. 

Even when considering scenarios with a challenging level of intermittent or variable renewable 

generation, it seems that there is still merit in the merit order stack. 
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