

b-tu

Brandenburgische Technische Universität Cottbus

Political Shocks and Efficient Investment in Electricity Markets

by Lenzen, V., Lienert, M. and <u>Müsgens, F.</u>

> BIEE Conference, Oxford 19th-20th May 2012

- presents a detailed power market investment and dispatch model (LP) with consistent electricity price estimators
- illustrates the effects of political uncertainty
 - using the example of the change in profit contribution
 - for a specific CCGT-power plant
 - due to the political decisions in Germany with respect to nuclear power

Nuclear Phase-Out (June 2000)

- Decided by red-green coalition government in June 2000
- An average of 32 years of operation for nuclear power plants in Germany

Brandenburgische Technische Universität

Cottbus

Energy Concept (2010 September)

- Decided by conservative-liberal coalition government end of September 2010
- Prolongation of running times by 8 and 14 years respectively

- Decided by conservative-liberal coalition government in June 2011
- Successive shutdown until 2022

Cottbus

The German Merit Order (without CHP and RES)

The German Merit Order (without CHP and RES)

BTU Cottbus – Chair of Energy Economics – Prof. Dr. Felix Müsgens

Brandenburgische Technische Universität

Cottbus

In addition to the merit order, the model ...

- ... considers non-dispatchable generation (wind, solar, CHP, ...)
- ... includes endogenously capacity additions (and reductions)
- ... includes endogenously international power exchange by modeling several regions simultaneously
- ... includes endogenously dynamic effects (e.g. start-up costs, balancing power, pump storage, planned power plant revisions, ...)

Cottbus

- Long-term investment and dispatch model
- Fundamental optimization model (LP)
- Objective: minimization of total system costs
- Resolution
 - 10 reference years
 - 4,380 periods per year
 - 10 model regions (Germany and neighboring countries)
 - up to 23 technologies per region
- Shadow prices (i.e. marginals of demand constraint) used as price estimators

European Electricity Market Model Objective Function

$$\min Z = \sum_{y} f_{y}^{d}(y) *$$

$$(num_years(y) *$$

$$[\sum_{p,t} num_hours * f_{p}^{d}(p) * z^{var}(y, p, t) * G_{PLANT}(y, p, t)$$

$$startup costs = \left\{ \begin{array}{c} + \sum_{p,t} f_{p}^{d}(p) * z_{up}(y, p, t) * C_{UP}(y, p, t) \\ + \sum_{p,t} f_{p}^{d}(p) * z_{down}(y, p, t) * C_{DOWN}(y, p, t) \end{array} \right\}$$

$$shutdown costs = \left\{ \begin{array}{c} + \sum_{p,t} f_{p}^{d}(p) * z_{down}(y, p, t) * C_{DOWN}(y, p, t) \\ + \sum_{t} z^{fixed}(t, y) * C_{INST}(y, t) \end{array} \right\}$$

$$investment costs = \left\{ \begin{array}{c} + \sum_{t} s_{invest}^{cost}(y, t) * z_{invest}(t, y) * C_{ADD}(y, t) \end{array} \right\}$$

- Capacity of a technology determined by commissioning and decommissioning
- Certain part of the capacity in **overhaul** over the course of a year
- Capacity ready-to-operate determined through startups and shutdowns and limited to the installed capacity minus the capacity in overhaul (startups and shutdowns linearized) and unexpected outages
- Generation
 - upwards limited by the capacity ready-to-operate
 - downwards limited by linearized minimum load requirements (defined as share of capacity ready-to-operate)

- Generation equals residual demand plus/minus international exchange plus electricity consumption from pump storage
- **Exchange** between countries limited by net transfer capacities
- Stored energy of (pump) storage plants determined by pumped and turbined energy amounts plus natural inflow

Brandenburgische Technische Universität Cottbus

Results System Marginal Costs of Demand

Results

Profit contribution for Trianel's CCGT power plant

- CCGT project in Hamm-Uentrop with 800 MW installed net generating capacity
- commercial operation since end of 2007 (expecting atomic consensus, i.e. nuclear phase out)

b-tu

Brandenburgische Technische Universität Cottbus

Thank you very much! Questions?

- Changes in nuclear power policy affect the entire energy market
- Nuclear power
 - is a technology with low variable costs
 - covers base load (high full load hours)
- Shutting down nuclear power capacity
 - changes the merit order
 - increases electricity prices

- Trianel CCGT
 - begin of operation at the end of 2007
 - expected time of operation 30 years (until 2037)
 - calculation horizon (2012-2037) last 25 years of operation time

	Atomic Consensus	Energy Concept	Nuclear Phase-Out 2022
Revenue electricity generation (million €)	2,646	1,430	2,610
Variable production costs (million €)	-2,153	-1,136	-2,117
Startup and shutdown costs (million €)	-87	-66	-87
Fixed costs (million €)	-270	-270	-270
Net revenue (million €)	136	-42	136

➔ Significant effect on the profitability of the CCGT

CO₂ Prices

Cottbus

