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Abstract 

Photovoltaic (PV) panels offer significant potentials for contributing to the UK’s energy 

policy goals relating to decarbonisation of the energy system, security of supply and 

affordability. The substantive drop in the cost of panels since 2007, coupled with the 

introduction of the Feed-in Tariff (FiT) Scheme in 2010, has resulted in a rapid increase 

in installation of PV panels in the UK from 16.1MW installed capacity in 2010 January to 

12.4GW by 2017 December. Yet, spatial and temporal diffusion of PVs show significant 

differences across the UK.  

By creating reverse flows on the networks, especially at low voltage distribution 

networks, domestic PVs present a key challenge for network operators to manage the 

grid such that there is enough capacity and voltage headroom available to accommodate 

these flows. That’s why understanding spatio-temporal diffusion of PVs can provide 

valuable insights to both network operators and policy makers with a view to predict 

and shape their future deployment.  

To date, different approaches have been used for analysing PV diffusion process, 

including (i) spatial regression, (ii) agent-based modelling (ABM) and (iii) epidemic 

models. These approaches present different strengths and weaknesses.  

The spatial regression and epidemic models characterise the adoption process at a 

geographical scale (i.e. an aggregated level) to analyse the impact of independent 
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variables on the PV diffusion at different scales from neighbourhood, city level up to 

national level. ABMs on the other hand focus on the individual decision-making process, 

taking into account other individuals’ choices in the agent’s network and their 

interactions so as to capture emerging social dynamics.  

While spatial regression and epidemic models overlook the temporal dimension of the 

diffusion process, ABMs have limited capacity in representing large populations and 

characterising temporal aspects explicitly. Moreover, many ABMs are driven by rational 

choice theory arguing that agents have access to perfect information to undertake 

complex calculations to evaluate gain in their utility. The aim of this work to address 

these limitations by developing a novel agent-based model where agents are defined as 

geographical areas (rather than as individuals as commonly done). The agents’ decision-

making process is defined by artificial neural networks (ANN) so that we can analyse the 

spatial-temporal diffusion of PVs by taking into account both peer effects and underlying 

spatial regularity of diffusion patterns as informed by spatial econometrics literatures. 

Drawing from computer and complexity sciences, geographical information systems and 

energy economics, and using socioeconomic data at Post Code level, the model has the 

following novel aspects:  

• The ANN‘s ability to improve agent’s decision-making process by taking into 

account socioeconomic time series data  

• The ABM’s ability of characterise the social dynamics at large scale using spatially 

explicit data sets  

• The ANN’s capability to capture the evolution of the system using explicit time-

horizon  

 

The initial prototype model is developed for the City of Birmingham focusing on the PV 

adoption process. Our initial auto-regressive model predicts future diffusion patterns at 

post-code level on a monthly basis. Both limited availability of time series data and 

spatial influence of other agents’ estimations on a given agent’s estimation lead to 
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accumulation of errors spatio-temporally. Emerging results using socio-economic 

variables highlight the importance of income, electricity consumption and the 

household size. We also detect strong spatial dependency in the diffusion patterns.  

Overall this work will produce novel insights on the potential spatial PV clustering, then, 

that may help distribution network operators to develop better strategies to 

accommodate higher loads which will, in turn, help keeping the energy affordable for 

consumers. The model can be used further to analyse the impacts of alternative policies 

to influence PV adoption, such as the development of local economic incentives. 

Keywords: Spatial diffusion of innovations; Agent-based modelling; Solar photovoltaic 

adoption; Artificial neural networks; Spatio-temporal modelling. 

 

1 Introduction  

This paper builds on the three recurrent modelling approaches found in the literature: 

ABM, spatial regression and the epidemic models. Their common features, key 

assumptions as well as the aspects that we modify in our approach are presented next. 

The ABMs that have analysed the PV adoption process have commonly characterise 

agents as housholds, either considering the homeonwer’s socioeconomic characteristics 

or the dwelling’s economic and physical characteristics. Frequently, the decision-making 

process is based on the Theory of Planned Behaviour. Then, model assumes that each 

agent has a dynamic “attitude” towards adopting PV, and the agents adopt if this 

attitude is greater than a threshold that is common for all the agents. Then, agents’ 

initial attitude is calculated based on survey data, and this is modified at each step of 

the simulation by the interaction with other agents in its own social network. Significant 

costs and time associated with surveys have led some researchers to find alternative 

variables to calculate the agent’s attitude (Haifeng et al., 2014; Müller and Rode, 2013; 

Rai and Robinson, 2015; Robinson et al., 2013; Robinson and Rai, 2015). 
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The econometric ond spatial-econometric approaches characterise the PV adoption 

process at local level (census tracks, regional geographical areas, block-group, postcode) 

using an econometric model that considers the spatial dimension of the adoption 

process. The model assumes (i) that individuals decision-making is affected by the 

observation of the PVs, thus, the social effect is based on the number of installed PVs 

spatially close to the locations; (ii) the outcome is the accumulation of individual choices, 

and  is defined by the number of PV installations in a specific location, at any specific 

month; (iii) the model considers independent and identically distributed estimation 

errors; this term is used to capture any non-predicted behaviour in the data. For future 

research, the authors suggest (i) to take into account the social effect that occurs 

between areas (spill over effect). (ii) Extend the model from auto-regressive to a 

multivariable approach, and explore the variation of results when changing the study 

scale. (iii) Finally, to improve the model replacing the regression with a non-linear model 

to capture the non-linear PV data’s behaviour  and its temporal dynamics (Balta-Ozkan, 

Yildirim and Connor, 2015; Davidson et al., 2014; Graziano and Gillingham, 2015; Kwan, 

2012; Langheim, 2014; Schaffer and Brun, 2015).  

Finally, the epidemic models have modelled the PVs’ adoption process at local level 

(census tracks). These models are based on the Poisson distribution, and assumes that 

at individual level there is no explanatory elements for any decision taken during the 

adoption process. Hence, the decision-making criteria is not deterministic. Also, the 

agents’ interaction is not fixed to any particular network. Then, the model is constructed 

considering that (i) there are a limited number of contacts (interactions) made at each 

period of time and is defined by the population density; (ii) it is not essential to know 

the specific individual’s network in order to understand the general diffusion process; 

And (iii) the model’s degree of uncertainty deepens on the study scale. The micro scale 

(individual level) can potentially assess the probability of adoption, with a high degree 

of uncertainty. On the other hand, macro scale (aggregated level) studies may provide 

the general adoption pattern, with a lower degree of uncertainty (De Groote, 

Pepermans and Verboven, 2016; Rode and Weber, 2016). The authors note that future 
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work could explore the impact of peer-effect into the decision process as well as 

examine the impact of temporal changes in the explanatory variables on the adoption 

rate.  

The aim of this work is to advance the agent-based modelling by developing a novel 

agent-based model where agents are defined as geographical areas (rather than as 

individuals as commonly done). The agents’ decision-making process is defined by 

artificial neural networks (ANN) so that we can analyse the spatial-temporal diffusion of 

PVs by taking into account both peer effects and underlying spatial regularity of diffusion 

patterns as informed by spatial econometrics literatures. Drawing from computer and 

complexity sciences, geographical information systems and energy economics, and 

using socioeconomic data at Post Code level, the model has the following novel aspects:  

• The ANN‘s ability to improve agent’s decision-making process by learning from 

the agent’s past choices via using socioeconomic time series data  

• The ABM’s ability of characterise the social dynamics at large scale using spatially 

explicit data sets  

• The ANN’s capability to capture the evolution of the system using explicit time-

horizon  

The initial prototype model is developed for the City of Birmingham focusing on the PV 

adoption process. Our initial auto-regressive model predicts future diffusion patterns at 

post-code level on a monthly basis. Both limited availability of time series data and 

spatial influence of other agents’ estimations on a given agent’s estimation lead to 

accumulation of errors spatio-temporally (Alderete-Peralta et al., due to submission). 

Emerging results using socio-economic variables highlight the importance of income, 

electricity consumption and the household size. We also detect strong spatial 

dependency in the diffusion patterns. 
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Overall this work aims to produce novel insights into potential adoption patterns that 

may help distribution network operators to develop better strategies to accommodate 

higher loads which will, in turn, help keeping the energy affordable for consumers. 

The modelling of agents’ behaviour using spatio-temporally explicit data result in more 

realistic estimation of adoption patterns and provides insights into how adoption 

patterns might develop in the future in a particular area. Also, the model can be used 

further to analyse the impacts of alternative policies to influence PV adoption, such as 

the development of local economic incentives.  

 



7 

 

2 Methodology 

This paper focuses on developing a spatio-temporally explicit ABM, which characterise 

agents as geographical areas and uses artificial neural networks as the agents’ decision-

making. The model is structured in two modules: the spatial layout and the decision-

making process, the former embedded in the later.  

As seen in Figure 1, the spatial layout is an ABM module that defines (i) the agents’ 

characteristics (socioeconomic variables), (ii) agents’ location, (iii) agents social-network 

manages the information flow with the inner module (the agents’ states, inputs and 

outputs). The ANN approach replaces the common rule-based agent’s decision-making 

process such that there are as many neural networks as agents in the simulation.  

 

 

Figure 1. Methodological framework and information flow between the layers. 



8 

 

 

2.1 ABM module  

This work adopts the aggregated definition of agents presented by Bierkandt et al. 

(2014) and Kunz (2011), characterising the agents as geographical areas. Spatial and 

temporal resolution follows Richter’s (2013) analysis using Postcode districts (PC) and 

monthly data. The model is empirically tested for the postcode districts in Birmingham 

city, using time series data on PV registrations by Office of Gas and Electricity Markets 

(Ofgem). 

The social influence is defined by the cumulative number of PV installations in the 

neighbourhood at any specific month. Following the first law of geography, ‘everything 

is related to everything else, but near things are more related than distant things’ 

(Tobler, 1970, p.236), the social influence is weighted according to the distance between 

agents. The agents’ social network is defined on the adjacency principle where two 

agents will be connected if they share a boundary. Data correspond to PV installations 

as of 30 September 2015 

Additionally, the model considers other factors affecting the decision-making process 

that may help to increase the accuracy of the model. Following Balta-Ozkan, Yildirim and 

Connor’s (2015) spatial econometric model, the model considers the following 

socioeconomic variables: income, population density, share of owned houses, share of 

detached houses, electricity consumption, education level, average household size, 

solar irradiation and CO2 emissions. Figure 2 shows an example of the ABM module 

where each agent has a fixed position and explicit boundaries. The red lines represent 

the spill over effect, which is the social effect that spatially adjacent geographical areas 

have on each other (Balta-Ozkan, Yildirim and Connor, 2015); this effect is affected by 

the distance between the agents. The blue lines represent the peer effect, which is the 

social effect that occurs within geographical locations (Richter, 2013)and is not 

sensitive to the distance. 
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Figure 2. Characterisation of social effects and information flows. 

 

In line with Richter’s analysis (Richter, 2013), the study considers total PV installations 

from 2010 onwards. However, in the case of Birmingham less than 1% of the total PV 

installations have a registration date before 2011. The examination of the data from 

2011 to 2015 results in 72 monthly observations, and a median number of 62. From the 

Birmingham’s PCs, there are three areas with less than five PV installations, contrary to 

Richter (2013) whose study excluded such areas with minimum or no installations, this 
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study includes these areas as to avoid modifying the spatial layout and the social 

networks.  

2.2 ANN module 

This paper focuses on the combination of ABM and ANN to explicitly analyse the spatio-

temporal nature of PV adoption process. The ANN’s design follows eight-steps identified 

by Kaastra and Boyd (1996). The authors highlight the following steps which follow a 

reiterative process: i) Variable selection, ii) Data collection, iii) Data processing, iv) 

Training, testing, and validation sets, v) Neural network paradigm, iv) Evaluation criteria, 

vii) Neural network training, and viii) Implementation. 

 

2.2.1 Variable selection 

Following Balta-Ozkan, Yildirim and Connor (2015) spatial econometric analysis, the 

dependent variable is defined as: 

 

𝑦 =  𝜌𝑊𝑦 +   𝑋𝛽  +   𝜀 

 

Where, the dependent variable (#PVs) is defined by an auto-regressive element, and a 

set of independent variables. Then, the temporal behaviour is denoted by lagging the 

inputs, as shown next: 

 

𝑃𝑉𝑡+1  =  𝑓(𝑃𝑉𝑡 𝑙𝑜𝑐𝑎𝑙, 𝐼𝑛𝑑𝑒𝑝𝑉𝑎𝑟𝑡 𝑙𝑜𝑐𝑎𝑙, 𝑃𝑉𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔) 

 

Initial list of socioeconomic variables follows Balta-Ozkan, Yildirim and Connor's spatial-

econometric model (2015), and the final variable’s selection is alike the econometric 

stepwise method, starting with a single variable and selecting the best fit, then 
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introducing a new variable and discretising if it does not improve the fitness, then 

stopping when the fitness can’t be improved any further. 

 

2.2.2 Data collection 

Feed-in Tariff Installation Report database is published by the Office of Gas and 

Electricity Markets (Ofgem), it contains the registered domestic PVs at four spatial 

references: Country, Local authority, Postcode district and Lower Super Output Area 

code (LSOA), in monthly basis. Socioeconomic data (census) is published by the Office of 

National Statistics, containing data such as income or home ownership etc; at 

aggregated level. 

 

2.2.3 Data processing 

This analysis focuses on the analysis of the analysis of PV diffusion patterns at high 

spatio-temporal resolution, then available data is processed and transformed to fit the 

model’s purpose and requirements. Data at LSOA or MSOA level aggregated to PC level 

using ONS’ reference look up tables. Weekly observations were aggregated to monthly 

basis, while lower resolution variables were temporal-disaggregated to estimate 

monthly observations. The only exception is the solar irradiation data because the 

changes in solar irradiation between one area to another, in this study scope, is 

minuscule. 

As seen in Table 1, half of the variables are available at PC level, the rest of the variables 

were aggregated from Lower Layer Super Output Area or Medium Layer Super Output 

Area to Postcode, except for the PV and weekly income temporal resolution that was 

aggregated or not modified, most of the variables have a low temporal resolution, 

annual or 10-year timeframe. Consequently, these annual dataset were interpolated 

into monthly observations following the UK Office of National Statistics’ (ONS) 

methodologies for temporal disaggregation. 
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Temporal disaggregation is a process for producing a time series at a higher frequency 

from data with a lower temporal resolution. Following ONS’s methodology, the 

monthly observations were estimated with the Fernandez algorithm. Monthly GDP 

observations have been estimated from the annual time-series, by applying the 

Fernandez’s  technique and using the Index of Services1 (Chamberlin, 2010). This 

estimation is at national level using the national level GDP and national index data, then 

the Index of house pricing was used to substitute the low spatio-temporal resolution 

index with a high resolution. 

 

Table 1. List of independent socioeconomic variables and their resolution 

 

                                            
1 The Index of Services measures the quantity of output from all UK services industries, and 
accounts for more than three-quarters of the output approach to the measurement of Gross 
Domestic Product. 

Variable Spatial 

resolution 

Temporal 

resolution 

Data points 

PV LSOA Annual 2011-15 

Weekly income MSOA Weekly 2013, 2015 

Pop. Density PC Census 2001,2011 

Owned household PC Census 2001,2011 

Detached household PC Census 2001,2011 

Electricity consumption LSOA Annual 2001, 2011-15 

QL2 PC Census 2010,2015 

House household size PC Census 2001,2011 

CO2 LSOA Annual 2001,2011 
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2.2.4 Training, testing, and validation sets 

ANN generates knowledge through a process of pairing inputs and outputs, then 

measuring the error between the actual output and the estimation. The ANN is capable 

to adjust is elements and increases the estimation error. This process takes place in 

three phases, during the training phase the ANN is feed with a sample of the dependent 

and independent variables, then one-by-one the estimation error is used to correct the 

ANN. Then, during the testing a sample of the data is used to determine if the model 

requires further calibration, if not then during the validation phase a third sample is 

using to measure the model fitness. Due to the limited number of observations, the sets 

were split into 90%-5%-5% of the sample, instead of the common 70%-15%-15% of the 

sample for the training, validation and forecast sets.  

 

2.2.5  Neural network paradigm 

Following Babazadeh (2017) ANN design, the input and output nodes represent the 

independent and dependant variables, respectively. Then the input nodes represent the 

1-lag the input variables, 𝑃𝑉𝑡 𝑙𝑜𝑐𝑎𝑙, 𝐼𝑛𝑑𝑒𝑝𝑉𝑎𝑟𝑡 𝑙𝑜𝑐𝑎𝑙, 𝑃𝑉𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔, and the output 

node represent the estimation for t+1. Figure 3. Example of an artificial neural network 

.shows an example of an ANN, yellow node represents the inputs (social effects and 

socioeconomic variables), and red nodes estimate the number of PVs. 
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Figure 3. Example of an artificial neural network . 

 

2.2.6  Evaluation criteria 

Model was validated temporally and spatially based on the fitness model, this measured 

using the Mean Average Percentage Error (MAPE). MAPE is a common measure to assess 

the accuracy of ANN estimation (Samarasinghe, 2016). This was extended to each of the 

agents’ ANN, yielding results for a population of neural networks.  

Hence, the model is validated considering the accuracy of the estimation of each neural 

network, then MAPE evaluation is defined as follows: 

𝑀𝐴𝑃𝐸𝑗 =  
100%

𝑛
∑ |

𝑃𝑉𝑡 − 𝑃�̂�𝑡

𝑃𝑉𝑡
|

𝑛

𝑖=1

 

Where  

n is the time series size 

𝑃𝑉𝑡 is the current number of PVs in the month t 

X1
 

X2
 

Xn
 

Input layer
 

Hidden layer
 

Output layer
 

Y
 

Input neurons
 

Processing neurons
 

Output neurons
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𝑃�̂�𝑡is the estimation of the number of PVs in the month t 

i is the specific month 

j is the specific area 

 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ 𝑀𝐴𝑃𝐸𝑖

𝑛

𝑖=1

 

 

Where  

n is the population size 

i is the specific area 

 

2.2.7  Neural network training and Implementation 

Each agents’ ANN is trained using the back-propagation algorithm, training will take 

place 5000 iterations or until validation check reaches a square error of 0.0001. 

 

3 Emerging results and discussion 

The integrated model empirically characterises 49 agents corresponding to the 

Birmingham PC districts, agents’ variables are updated at each iteration of the 

simulation. Each of the agent’s ANN is feed with its particular time series, reflecting the 

monthly PV uptake from 2011 to 2015.  

 

Model temporal validation is shown first, average fitness for the entire population in 

shown over the time. Then, the individual results by PC are mapped, showing their 

distribution spatially. 
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3.1 Temporal validation - Model fitness 

The model spatial and temporal validation highlights that the income, electricity 

consumption and average household size are the variables that yield the best fitness, 

producing a model with a 95% of accuracy. These variables have been proven to drive 

the adoption process, in both aggregated and individual level. Agent’s income has been 

used to define the agents’ utility or social threshold (Adepetu, Keshav and Arya, 2016), 

while aligned with DECC’s (2012) reports that suggest that income is a key decision 

variable for households to adopt the PV technology. Electricity consumption and 

average household size follows the same logic, as households with more affluence tend 

to have a higher electricity consumption. Besides the error introduced by the temporal 

disaggregation of the socioeconomic data, the results are more realistic as the other 

models that do not consider changes in the agents’ characteristics over time.  

Figure 4 shows the average error histogram for the entire population, as the training of 

the neural networks starts, it is more likely for the neural network to produce extreme 

values and this presents some disturbances in the first half of the sample. Besides these 

elements, the MAPE decreases over the time and stabilises at the end of the sample.  
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Figure 4. Average Mean Absolute Percentage Error for the entire population over the time 

(Training phase). 

 

Further analysis of the errors reveals a stronger temporal pattern. The errors’ marginal 

change month by month was calculated and shown in Figure 5. Almost 40% of the areas 

present its largest these disturbances at the end of 2011 (Nov), which corresponds to 

the highest Feed-in Tariff rate that proceeded to the latter decrement of it. The former 

is significantly important to the applicability of the model, it shows that the FiT 

programme doesn’t have the same impact on all the areas. The former might suggest 

that the FiT’s efficiency present spatial differences, highlighting the need for more local 

policies taking into account the emerging spatial patterns. 
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Figure 5. Proportion of the population that at a given point presents a significant 
change in errors’ trends (multivariate model) 

 

3.2 Spatial validation - agent’s characterisation 

The study focuses on capturing the actual spatial layout of the agents, , thus, this locates 

agents’ accordingly to the Birmingham city layout. The PCs geographical level considers 

the population size and social homogeneity, providing a more accurate agents’ location 

than the common use of spatial grids (cells) or random location. We argue that taking 

a spatially explicit approach (in the form of PCs) increases the accuracy and confidence 

of the model results. Furthermore, contrary to Richter (Richter, 2013) that excludes the 

areas with a minimum or null number of PVs,  our study keeps those to maintain the 

real-world layout, increasing the authenticity of our results.  

Considering the overall results presented in the previous section, the agents’ individual 

results are shown next. As seen in Figure 6, most of the areas present a fitness level 

above 90%, while the areas with the largest errors (+25%) are the ones with less than 

five PV installations. Because of the small number of PVs, the MAPE calculation is 

sensitive to any minor change in estimated value, as in the case of the central PCs in 

Figure 6 that have the minimum number of PV installations (these cases are coded as 
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“000”. As seen in Figure 6. and Figure 8. the errors do not follow any spatial pattern, 

neither the spatial distribution of PV patterns as shown in Figure 7. 
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Figure 6. Spatial distribution of error estimation (Mean Absolut 

Percentage Error) for the Birmingham PCs. 

 

Figure 7. Spatial distribution of the PV installations in the 

Birmingham PCs. 
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Figure 8. Spatial distribution of error estimation (Absolute error) 

for the Birmingham PCs. 

 

3.3 Predictive accuracy 

Model’s forecasting validity was tested excluding 5% of each time-series, after the 

training process these data was input for the ANN. ANNs were not modified during this 

process; predictive accuracy follows the same calculation as described in Section 2.2.6. 

Reversely to the training histogram, as seen in Figure 9, the average forecast’s MAPE 

accumulates. The first forecasted period’s error is similar to the training error, but it 

quickly duplicates to 10% by the fifth step. This is because the estimation is affected 

not only by the own agent’s error, but those of in their social networks.  

The PCs individual results for the 1st, 3rd and 5th forecasts are shown in Figure 10, Figure 

11, and Figure 12 respectively. During the first forecast period most of the areas have 

an error below 10%. However, by the fifth forecast the error significantly increases 

where almost 30% of the agents having more than 10% of errors. 
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Figure 9. Average Mean Absolute Percentage Error for the entire population over the time. 
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Figure 10. Spatial distribution of error estimation (Mean Absolut 

Percentage Error) for the Birmingham PCs (3rd forecast). 

 

 

Figure 11. Spatial distribution of error estimation (Mean Absolut 

Percentage Error) for the Birmingham PCs (1st forecast) 
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Figure 12. Spatial distribution of error estimation (Mean Absolut 

Percentage Error) for the Birmingham PCs (5th forecast) 

 

4 Limitations  

The limitations of this study and future areas of research are as follows: 

• The data processing required for the agents’ spatio-temporal characterisation, 

including temporal disaggregation of socioeconomic variables, may introduce a 

degree of error into the decision-making process.  

• Results presented in this study support the main assumptions of the analysis, 

however, the results are specific for the city of Birmingham.  

• Considering the dynamic nature of agent’s characterisation increases the 

robustness of our results and forecasting,  

• As shown in Section 3.2 there is a significant impact of the FiT programme, yet it 

was not included as an independent variable. 

 

5 Conclusions and future work 

This paper presents a novel approach to characterise the PV adoption process at a high 

temporal and spatial resolution which is empirically validated for the Birmingham city. 
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The model is capable of estimating future values of the number of PV at postcode district 

level. This approach can be adopted in any ABM – not only PV ABM.  

Furthermore, study advances the study of the PV adoption process, by integrating the 

ABM the ANN approach into the agent’s decision-making process. The ANN approach is 

validated to be an alternative to the previous decision-making process found in the 

literature. The most significant improvement carried out by the ANN is the capability to 

reduce uncertainty by considering the agents’ past behaviour. 

The model’s results consider both the spatial and temporal nature of the process and 

the social dynamics that drive the adoption process. Hence, the model can complement 

the findings produced by the aggregated and individual approaches. On the one hand, 

national studies can analyse the trends but they overlook the spatial dimension. On the 

other hand, the individual studies are useful to understand the spatial nature of the 

adoption process, but temporal characterisation is limited. 

By addressing these limitations between aggregate and individual studies, the outlined 

approach integrates the strengths of these approaches. This novel approach reduces the 

exhaustive data requirements that the individual level approaches require while 

increasing the certainty of the results. The spatial characterisation increases the degree 

of certainty on the agent’s location, which is fundamental to produce insights on the PV 

spatial clustering which has important implications for the management of the 

distribution networks. Hence, the model can produce insights that help distribution 

network operators to develop better strategies to accommodate higher loads which will, 

in turn, help keeping the energy affordable for consumers. 

Future research might explore extending the study’s scope to bigger areas or other cities 

to assess whether the results are replicated. Extending the time frame by longer 

statistics but also high-resolution socio-economic data. Additionally, future work could 

include the FiT variable as an independent variable and confirm its impact on the errors’ 

perturbances shown in this study. Finally, forthcoming work could take advantage and 

produce more robust insights that helps policy makers in designing local policies that 

recognise the variation of the socio-economics factors and the financial incentives. 
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