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Abstract

Both regulators and energy companies have recognised the need to understand the distributional
implications of energy policies. This paper considers the example of the impact of Time of Use
(tou) tariffs on household electricity demand. Consumers in different socioeconomic groups may
react in different ways to the introduction of tou tariffs. Similarly, customers with distinct historical
intra-day load profiles respond differently to the introduction of tariffs that charge different prices for
electricity at different times of the day.

In this paper, we apply recently developed Machine Learning (ml) methods to determine how
household demand response to Time of Use (tou) electricity pricing schemes varies with survey
variables and past consumption data. Heterogeneous response is described by estimates of Conditional
Average Treatment Effects, which are the expected differences between treated and control households
for subsets of the population defined by covariates. We use causal trees (Athey & Imbens 2016) to
search across potential conditioning variables for aspects of heterogeneity that are possibly difficult
to hypothesize a priori. We then obtain household-specific estimates from a causal forest (Wager &
Athey 2017).

Household-specific estimates produced by a causal forest exhibit reasonable associations with
covariates. For example, households that are younger, more educated, and that consume more elec-
tricity, are estimated to respond more to a new pricing scheme. In addition, variable importance
measures suggest that some aspects of past consumption information may be more useful than sur-
vey information in producing these estimates. Furthermore, household response estimates exhibit
some bimodality when past consumption information is available, in contrast to the distribution of
estimates produced by using only survey covariates.

1 Introduction

If a policymaker believes the impact of a particular policy will be the same across a given population, then
reporting an average effect is informative. Alternatively, if she believes that the effects are heterogeneous,
then it would be necessary to report the distributional effects of the policy. The critical question is: does
the policymaker know ex ante which characteristics of individuals are driving the differences in the
impact of the policy?Put differently, is it possible to specify a distribution of effects, conditional on a set
of demographics and usage data without first looking at the data?

In many instances this is a difficult problem to address. In assessing whether demographic variables are
informative in terms of the impact of tou tariffs on load profiles, the Customer-Led Network Revolution
project (Sidebotham & Powergrid 2015) noted

.. a relatively consistent average demand profile across the different demographic groups, with
much higher variability within groups than between them. This high variability is seen both
in total consumption and in peak demand.

∗Contact Author: Dr. M. Weeks, Faculty of Economics, University of Cambridge, Cambridge CB3 9DD, UK. Email:
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As the set of demographic variables increase, analysts that perform post hoc analysis by looking for
patterns in the data that were not specified a priori, run into the well-known multiple hypothesis testing
problem.

As an example, consumers in different socioeconomic groups, with different incomes or behavioural
characteristics may react in different ways to the introduction of tou tariffs. Similarly, customers with
distinct historical intra-day load profiles, will respond differently to the introduction of tariffs that charge
different prices for electricity at different times of the day. Customers who can (cannot) adapt their
consumption profile to tou tariffs will accrue a benefit (cost). Those who consume electricity at more
expensive peak periods, and who are unable to change their consumption patterns, could end up paying
significantly more.

The question of which demographic variables are important when considering the impact of energy
policies ignores the fact that many of these variables should be considered together, in a multiplicative
fashion. One reason for this finding might be that it is the (unknown) combination of income, household
size, education, and daily usage patterns that describes a particular vulnerable demographic group.

The Conditional Average Treatment Effect (cate) estimator, the expected effect of a treatment for
individuals in a subpopulation defined by covariates, can be used to obtain estimates of a treatment effect
that varies. A researcher may wish to describe subpopulations that are of interest a priori, and which can
be defined by a known combination of covariates. However, increasingly researchers have many available
covariates and it may not be clear which covariates should be used to categorise heterogeneity, nor is it
clear what functional form best describes the association between these covariates and treatment effects.

In this paper we consider the distributional effects on customers following the introduction of Time-of-
Use (tou) pricing schemes where the price per kWh of electricity usage depends on the time of consump-
tion. These pricing schemes are enabled by smart meters, which can regularly (e.g. half-hourly) record
consumption. We will describe how the effect of tou pricing schemes on household electricity demand
is associated with variables that are observable before the introduction of the new pricing schemes. Our
chosen method allows the analyst to be agnostic as to which variables are important and the functional
form.

We demonstrate the application of a recently developed method, known as a causal tree, and an
aggregation of causal tree estimates known as a causal forest (Athey & Imbens 2016, Wager & Athey
2017). These methods search across covariates for good predictors of heterogeneous treatment effects.
Causal trees provide an interpretable description of heterogeneity, while causal forests can be used to
obtain individual-specific estimates of treatment effects.

Some limitations of these approaches are also encountered in this paper. The partitions generated
by tree-based methods can be sensitive to subsampling, while causal forests produce more stable, but
less interpretable estimates. Our approaches for interpreting causal forest estimates include variable
importance measures and the methods used in some recent applications (Davis & Heller 2017a,b, Bertrand
et al. 2017).

In section 2 we first describe the potential outcomes framework and conditional average treatment
effects, then describe causal trees and causal forests. In section 3, we introduce the application to
electricity smart meter data, review existing literature, and describe the data.In section 4, we present the
results. Section 5 concludes.

We first review the definition of the cate and standard methods for the estimation of the cate.
Then we elaborate on the chosen methods, an adaption of regression trees known as causal trees, and
an aggregation of causal tree estimates known as a causal forest. We also discuss the interpretation of
causal forest output and variable importance measures.

2 Methods for Estimation of Heterogeneous Treatment Effects

The estimand is defined using the potential outcomes framework introduced by Neyman (1923) and
developed by Rubin (1974). Let Xi be a vector of covariates for individual i. Suppose that there is one
treatment group of interest. Yi(1) (Yi(0)) denotes the potential outcome if individual i is allocated to the
treatment (control) group. The causal effect of a treatment on individual i is therefore Yi(1)−Yi(0). The
fundamental problem of causal inference is that we do not observe the causal effect for any i (Holland
1986).

The estimand that we consider is the Conditional Average Treatment Effect (cate)

τ(x) = E[Yi(1)− Yi(0)|Xi = x] (1)
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The cate can therefore be thought of as a subpopulation average treatment effect1 2. Let Ti be the
treatment indicator variable. The cate is identified under unconfoundedness, i.e. Yi(1), Yi(0) ⊥ Ti|Xi ,
and overlap, i.e. 0 < Pr(Ti = 1|Xi = x) < 1 ∀ x.

The ate can be estimated by a difference in means ȳt − ȳc, where ȳt (ȳc) is the mean of the outcome
variable for the treated (control) group. The ate can also be estimated using a linear model including
dummy variables for treatment allocation and a set of control variables.

The cate can be estimated by including interactions between the treatment indicators and the condi-
tioning variable(s) of interest. The inclusion of interaction terms in a linear model is a common technique
for exploring the heterogeneity of treatment effects in areas ranging from biomedical science to the social
sciences3.

Machine Learning Methods

The selection of variables can be based on tests of multiple hypotheses. For example, it is possible to
search for heterogeneity in treatment effects simply by separately estimating cates using many possible
conditioning variables and repeatedly estimating the standard linear regression model. However, a clear
problem is false discovery and the need to adjust significance levels for multiple hypothesis testing which
can limit the power of a test to find heterogeneity.

A number of alternative machine learning methods allow the researcher to explore for more complex
forms of heterogeneity. Recent methods involving lasso and treatment effect estimation are described
in papers by Imai et al. (2013), Weisberg & Pontes (2015) and Tian et al. (2014). However, Athey &
Imbens (2017) note some drawbacks of lasso methods, particularly the need for sparsity assumptions.

lasso methods are preferable to tree and forest methods when outcomes or treatment effects are
linearly or polynomially related to the covariates. We are interested in allowing for many possibly
nonlinear interactions between covariates, which is more easily implementable through forest methods.

Regression Trees

In this section we provide an overview of the Classification and Regression Tree (cart) method of
Breiman et al. (1984). We describe regression trees, and then describe two key adaptations to regression
tree methods introduced by Athey & Imbens (2016): honest estimation - the use of separate subsamples
for constructing the tree and for obtaining estimates for each leaf, and the adjustment of the splitting
criterion for when treatment effects are estimated for each leaf4.

Suppose there are p covariates and N observations. The covariate space will be partitioned into
M regions R1, ..., RM and the outcome for an individual with covariate vector x in region Rm will be
estimated as the mean of the outcomes for training observations in leaf Rm. The following algorithm is
used to apply binary splits of the data:

Let Xj be a splitting variable and s be a split point. Define R1(j, s) = {X|Xj ≤ s} and R2(j, s) =
{X|Xj > s}5. The algorithm selects the pair (j, s) that solves:

min
j,s

 ∑
xi∈R1(j,s)

(yi − ȳ1(j, s))2 +
∑

xi∈R2(j,s)

(yi − ȳ2(j, s))2

 (2)

where ȳ1(j, s) and ȳ2(j, s) are the mean outcomes in R1(j, s) and R2(j, s) respectively. When the data
has been split into two regions, the same process is applied separately to each region. Then the process
is repeated on each of the four resulting regions, and so on.

1In instances where we condition on x being in some subset of the covariate space, i.e. x ∈ A ⊂ X, and τA =
E[Yi(1)− Yi(0)|x ∈ A], we also refer to this as the cate (with suitably re-defined covariates).

2Another estimand is the average effect conditional upon observed covariates τ̄ = 1
N

∑N
i=1 τ(xi) = 1

N

∑N
i=1 E[Yi(1) −

Yi(0)|Xi = xi]. Imbens & Rubin (2015) refer to this as the conditional average treatment effect, but we shall use the above
definition of the cate.

3A description of the application of linear regression methods for the purpose of estimating treatment effects in random-
ized experiments can be found in Athey & Imbens (2017).

4This section summarizes the description of regression trees provided by Hastie et al. (2009), and the description of
honest estimation provided by Athey & Imbens (2016).

5If a splitting variable is categorical with q unordered values, then we can consider all 2q−1 − 1 possible splits of the q
values into two groups, or we can use binary variables for each category.
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A common approach for limiting the amount of overfitting is to grow a tree T0, stopping when some
minimum node size is reached, and then to “prune” the tree in the following way: A subtree T ⊂ T0 is
any tree that can be obtained by collapsing any number of non-terminal nodes. Let the terminal nodes be
indexed by m and let |T | be the number of terminal nodes in T . Let Nm be the number of observations in

Rm, and let Cα(T ) =
∑|T |
m=1

∑
xi∈Rm

(yi− ĉm)2 +α|T |, where ĉm = 1
Nm

∑
xi∈Rm

yi . For each parameter
α, pruning finds the subtree Tα ⊆ T0 that minimizes Cα(T ). The tuning parameter α ≥ 0 determines
the trade-off between tree size and goodness of fit. For the final tree Tα̂, the value α̂ can be chosen such
that it minimizes the cross-validated Mean Square Error.

In machine learning, a dataset is often divided into training data and testing data, denoted by Str
and Ste respectively. Model selection, which in the case of a tree, is the partition that defines the tree,
and estimation are carried out on Str with the goal of minimizing expected mean squared error in Ste.
Often, the selection and estimation of a model also requires a choice of value for some tuning parameter,
which can be used to avoid overfitting.

The tuning parameter can be chosen by cross-validation, which involves splitting the training data into
training and validation subsamples, respectively Str,tr and Str,cv. The model can be fitted for different
parameter values using Str,tr, and the mse in Str,cv can be used to evaluate the choice of α. The final
chosen α is then used in selection and estimation carried out on all of Str.

Adaptive and Honest estimation

Let the outcome for individual i be denoted by Yi and the sample mean for the leaf in which a tree
allocates an individual with covariates Xi be denoted by µ̂(Xi;Str,Π(Str)). Π denotes a partition of the
covariate space and Π(Str) is a partition created by applying the regression tree algorithm to the training
data.

A standard regression tree is referred to as adaptive in order to distinguish it from a so-called honest
regression trees (Athey & Imbens 2016). The adaptive regression tree splitting criterion is given by
mseµ(Str,Str,Π) + α × no. of splits, where the first argument of mseµ(.) indicates that the error is
evaluated in-sample on the training data Str. The second argument indicates that the leaf means are
calculated using the training data Str. Π is a potential partition of the covariate space.

Standard machine learning methods are biased because they use the same training data for model
selection and estimation (see Athey & Imbens (2016)). Honest methods avoid this problem by using
different information for selecting the model and for estimation. In the context of regression trees, an
honest regression tree involves partitioning the training data into separate samples used to construct
the tree (i.e. choosing the splits, including cross-validation), and for estimating the within-leaf means.
Following the notation of Athey & Imbens (2016), we let Str and Sest denote, respectively, the training
and estimation subsamples. It should be noted that while this method eliminates the bias and allows for
estimates with standard asymptotic properties there is also a potential loss of precision resulting from
smaller sample size.

For honest regression trees the target criterion is ESte,Sest,Strmseµ(Ste,Sest,Π(Str)) where Ste indi-
cates that mse is constructed using test data, and Sest denotes that leaf means will be calculated using
independent estimation data. Note that the splits of the tree are chosen in honest estimation without
using the data that will be used for estimating leaf means.

A critical difference between adaptive and honest splitting is that the honest splitting criterion takes
account of the uncertainty associated with the yet to be constructed leaf-mean estimates. This is ac-
complished by including an estimate of within-leaf variance, 1

Nest

∑
`∈Π S

2
Str (`(x; Π)), where Nest is the

number of observations in Sest. The term ( 1
Ntr + 1

Nest )
∑
`∈Π S

2
Str (`(x; Π)) explicitly penalizes finer par-

titions that lead to greater variance in leaf estimates. In contrast, the adaptive splitting criterion can be
written as − 1

Ntr

∑
i∈Str µ̂2(Xi;Str,Π).

The estimate of the expected mean square error is

ˆemseµ(Str, Nest,Π) ≡ − 1

N tr

∑
i∈Str

µ̂2(Xi;Str,Π) + (
1

N tr
+

1

Nest
)
∑
`∈Π

S2
Str (`(x; Π)) (3)

where S2
Str (`(x; Π)) is the estimated within-leaf variance. The splitting criterion is then written as

ˆemseµ(Str, Nest,Π)+α×no. of splits, where the tuning parameter α is chosen using the cross-validation
criterion ˆemseµ(Str,cv, Nest,Π)6.

6 ˆemseµ(Str, Nest,Π) is an approximately unbiased estimator of emseµ(Π) for a fixed Π, but it is not unbiased when
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Tree Methods for Estimating Treatment Effects

Causal trees are different to regression trees in that the leaf estimates are cates, obtained by a simple
difference in means. Whereasregression trees are constructed by recursively splitting the data in order
to minimize the mean square error of estimated outcomes, causal tree splits are based on minimizing an
estimate of the infeasible mean square error of estimated treatment effects. Below we briefly outline a
number of approaches that adjust regression tree methods for the treatment effect context.

A straightforward method involves fitting trees separately to treatment group individuals and control
group individuals (Athey & Imbens 2016, 2015). The estimated treatment effect for any set of covariates
is simply the difference in the estimated outcomes for the two trees7. However, in this two-tree approach
the splits take account of heterogeneity in separate potential outcomes rather than heterogeneity in the
treatment effects.

Athey & Imbens (2016, 2015) outline an approach that involves using a transformed outcome Y ∗i =
Yi.(Wi − p)/(p.(1− p)), where p is the probability of treatment. This Transformed Outcome Tree (tot)
method has the advantage that E[Y ∗i |Xi = x] = τ(x) and off-the-shelf regression tree methods can be
applied. In general this method is not efficient because the information in the treatment indicator is
only used in constructing the transformed outcome. Athey & Imbens (2016) also compare causal trees to
methods based on the t-statistic for treatment effect differences (Su et al. 2009), and outcome prediction
error (Zeileis et al. 2008).

The preferred method is the causal tree algorithm which utilises the within-leaf difference in sample
means for treatment and control groups (Athey & Imbens 2016).

Adaptive Causal Trees

The issue of adaptive versus honest estimation applies to both regression trees and causal trees. The
adaptive methods use the same data for splitting and constructing leaf estimates: leaf means for a
regression trees and leaf differences in means for a causal tree (Ȳ `treated− Ȳ `control). An adaptive regression
tree splits based on in-sample mse, while an adaptive causal tree splits based on an estimate of the
infeasible in-sample mse.

Let τi denote the treatment effect for individual i and τ̂(Xi;Sest,Π) denote the estimate of the average
treatment effect for the leaf to which individual i with covariates Xi has been allocated. For causal trees
the infeasible test data mse is mseτ (Ste,Sest,Π) ≡ 1

Nte

∑
i∈Ste{(τi − τ̂(Xi;Sest,Π))2 − τ2

i }.While we
never know τi (the mean-squared error of the treatment effect is thus infeasible), an unbiased estimator
of mseτ (Ste,Str,Π), can be obtained by recognising the fact that τ̂ is constant within leaves. Expanding
mseτ (Ste,Sest,Π) and then exploiting ESte [τi|i ∈ Ste : i ∈ `(x,Π)] = ESte [τ̂(x;Ste,Π)], gives

m̂seτ (Ste,Str,Π) ≡ − 2

N te

∑
i∈Ste

τ̂(Xi;Ste,Π).τ̂(Xi;Str,Π) +
1

N te

∑
i∈Ste

τ̂2(Xi;Str,Π). (4)

Given that Ste is unknown when the tree is being constructed, a different expression is used in the splitting
criterion. If we replace τ̂(Xi;Ste,Π) in (4) with τ̂(Xi;Str,Π), this gives an estimator of the infeasible
in-sample goodness-of-fit, m̂seτ (Str,Str,Π) ≡ − 1

Ntr

∑
i∈Str τ̂2(Xi;Str,Π), used in the splitting criterion,

m̂seτ (Str,Str,Π)+α×number of splits, where α is set by cross-validation. The cross-validation criterion
is m̂seτ (Str,cv,Str,tr,Π).

Adaptive causal trees give biased estimates, and Athey & Imbens (2016) find that unbiased honest
causal trees perform better in simulations in terms of MSE and coverage of confidence intervals.

Honest Causal Trees

With the aim of minimizing ESte,Sest,Strmseτ (Ste,Sest,Π(Str)), the estimate of the expected mse used
with the honest causal tree splitting criterion is given by

ˆemseτ (Str, Nest,Π) ≡ − 1

N tr

∑
i∈Str

τ̂2(Xi;Str,Π) + (
1

N tr
+

1

Nest
)
∑
`∈Π

(
S2
Str
treat

(`)

p
+
S2
Str
control

(`)

1− p

)
(5)

repeatedly used to evaluate splits, and therefore ˆemseµ(Str, Nest,Π) is likely to overstate the goodness of fit for deep trees.
Therefore cross-validation still plays a role, albeit a less important role.

7Similar methods are used by Beygelzimer & Langford (2009) and Foster et al. (2011).
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where p is the probability of allocation to the treatment group, and SStr
treat

(SStr
control

) is the trainng
sample variance for treated (control) observations in leaf `. For determining the penalty parameter, α,
by cross-validation, we use ˆemseτ (Str,cv, Nest,Π).

Some additional parameters must be specified when fitting causal trees. We must specify the minimum
number of treatment and control observations required in leaves resulting from a split. If we use honest
estimation, then we must decide how much data to use for training and how much to use for estimation.

Forests

Since individual trees are noisy, forests emerge from averaging over many trees, thereby reducing the
variance. The estimates produced by random forests are often more accurate than single tree estimates
in terms of mse. We include below a brief description of a random forest.

The prediction of a random forest is the average of many unpruned regression trees. Each tree is
produced using a bootstrap sample without replacement. At each split in the tree, the algorithm uses a
random subset of the set of all covariates as potential splitting variables. Each tree is fully grown up to
a minimum leaf size.

A standard random forest algorithm is (Friedman et al. 2009):

1. For b = 1 to B:

• Draw a bootstrap sample of size N from the training data

• Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating the following
steps for each terminal node of the tree, until the minimum node size nmin is reached.

– Select m variables at random from the p variables.

– Pick the best variable and split point among the m variables

– Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1

The prediction for an individual with a vector of covariates x is then 1
B

∑B
b=1 Tb(x), where Tb(x) is

the estimate produced by tree b. The trees are not independent, because two bootstrap samples can have
some common observations, and therefore the correlation between trees limits the benefits of averaging.
However, this correlation is reduced through the random selection of the input variables.

Similar aggregations over causal trees, known as causal forests, can improve the accuracy of treatment
effect estimates. Wager & Athey (2017) outline the properties of causal forests and show that, under
certain assumptions, the predictions from causal forests are asymptotically normal and centred on the
true treatment effect for each individual. Recent applications of causal forests can be found in papers by
Davis & Heller (2017a,b) and Bertrand et al. (2017). The forests in these papers use an honest splitting
rule for the construction of the causal trees.

Interpretation of Causal Forest Estimates

A more general issue which applies to standard regression trees and random forests, is the trade-off
between interpretable, but instable single trees8, versus the predictive performance of stable forests. A
single causal tree splits the data into relatively few leaves. The results are easy to interpret given that
a simple tree diagram allows the researcher to quickly identify the subgroup to which any household
belongs by following a set of decision rules.

Causal forest output may not be as readily interpretable as causal tree output. Potentially many
splitting variables can be used with different splitting points, and in different combinations across many
trees. Therefore it is not immediately clear what covariates most strongly influence the final estimates,
and how different covariates interact, but this is often of interest for applied econometricians.

We will describe how estimated Individual Treatment Effects (ites) vary across covariates. One option
is to use the size of estimated ites to split the data by quantiles, and then consider how covariates differ
across these subgroups. Davis & Heller (2017a) and Bertrand et al. (2017) use a causal forest to estimate

8Strobl (2008) notes that single trees can be unstable and small changes in the training data can lead to a very different
tree.
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individual-specific treatment effects, and then consider the average values of covariates for individuals in
different quartiles of the distribution of estimated effects. They then comment on the extent to which the
observed association between covariates and fitted effects is consistent with the standard theory relevant
to their application.

Variable Importance for Random Forests

A key motivation for the use of causal tree methods is that the algorithm searches across many covariates
for the variables and interactions that identify heterogeneity of treatment effects. It is therefore desirable
to gain some insight to which variables in this large set are most often selected by the causal forest output.
A standard measure first proposed by Breiman et al. (1984) uses, for variable `, the sum of improvements
in squared error brought about by splits where the splitting rule uses variable `. For decision tree T , with
J − 1 internal nodes, the importance of variable ` in tree T is given by

I2
` (T ) =

J−1∑
t=1

î2t I(v(t) = `) (6)

where î2t is the estimated improvement in squared error at node t, I() is an indicator function, and v(t)
is the variable chosen at node t that gives the maximal estimated improvement in squared error at that
node (Hastie et al. 2009)9. It is standard practice to assign a value of 100 to the most important variable
and scale the measures for the other variables accordingly.

This measure is applied to random forests (or any additive tree expansions) by averaging over M trees,

giving I2
` = 1

M

∑M
m=1 I2

` (Tm). Hastie et al. (2009) note that “due to the stabilizing effect of averaging,
this measure turns out to be more reliable than its counterpart for a single tree”. As noted by Breiman
et al. (1984) and Strobl (2008), this measure is biased towards variables with a higher number of categories
and continuous variables because these variables have more potential splitting points. Variables can be
incorrectly split on because one of many possible split points is spuriously found to reduce the most error
in the training data.

Variable Importance for Causal Forests

While the “ground truth” treatment effect for any individual is unobservable, it is possible to implement
a method similar to the standard squared error loss variable importance measure described above. For
honest causal forests, we can use the improvement in the honest splitting criterion. The aforementioned
bias of variable importance measures towards continuous variables and variables with many categories
can be avoided by making use of discretized variables with equal numbers of categories. This approach
can be implemented through an option provided by Athey et al. (2016) in the R package causalTree10.
However, discretization of variables can also lead to a loss of useful information, and reduce the accuracy
of our estimates.

3 Heterogeneity of Household Electricity Demand Response

Literature Review

tou electricity pricing schemes charge different prices for electricity usage at different times, e.g. different
days, times of the day. Usually a higher price is charged at peak demand hours relative to non-peak, and
a lower price is charged at night. tou tariffs are becoming more implementable through the use of smart
metering technology. In addition, new technologies are being adopted such as heat pumps and electric
vehicles. As a result, electricity demand profiles may change considerably for some individuals, and firms
may then introduce new pricing schemes to target consumers.

9This measure is often also adjusted, as suggested by Breiman et al. (1984), to take account of improvements in fit for
nodes at which the variable of interest is a good surrogate for the splitting variable. This addresses the potential problem of
the masking of the importance of variables that are not chosen for a split, but are highly correlated to the splitting variable.

10Athey et al. (2016) include an option to determine splits by separately ordering treated and untreated individuals
according to a potential splitting variable, then putting observations into numbered buckets, with a minimum number of
buckets and a maximum bucket size.
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The British energy regulator, Ofgem (2013), is interested in the impact of new pricing schemes upon
vulnerable and low income customers. Faruqui et al. (2010) postulate that two forces influence how we
expect low-income customers to be impacted differently by new electricity pricing schemes. Firstly, lower
income customers can have a greater proportion of their demand in off-peak hours, and therefore can
benefit from tou pricing without adjusting their daily demand profile. Secondly, we might not expect
these customers to shift and reduce load as much as other customers because they have lower usage
levels in general and less discretionary usage. The authors confirm these hypotheses using US data,
and find that low income customers change their electricity usage less than higher income customers.
Other possible reasons for lower responses from low-income customers include appliance ownership and
behavioural explanations. Di Cosmo & O’Hora (2017) suggest that lower income and less educated
customers could respond less to tou pricing schemes because these groups can be more myopic, and
weight the immediate gain from electricity consumption more than the future bill payment.

Studies by Lower Carbon London (Schofield et al. 2014) and Frontier Economics and Sustainability
First (DECC 2012) have noted the lack of evidence pertaining to differing responses of low-income
and vulnerable customers. Individuals most affected by energy policies might be identified through
the interaction of a number of variables. For example, the Centre for Sustainable Energy produced a
report (Preston et al. 2013) which noted a number of “hardest hit” groups, defined by multiple variables,
which are of interest a priori as these groups may contain many vulnerable customers.

The associations between electricity demand response and variables such as income and past electricity
consumption are potentially related to appliance ownership. Reiss & White (2005) note that the impact
of income upon demand response to dynamic prices operates through the choice of appliances rather
than through utilization behaviour. Therefore, differences in income have a larger influence on long-run
effects. The results also suggest that there are many price insensitive households, but a small fraction of
elastic responders. The authors find that there is a lower elasticity for households with high amounts of
electricity usage.

Heterogeneity of demand response across aspects of past electricity consumption can be useful for
describing how demand response varies with consumer behaviour, as described by past usage. Indeed,
when heterogeneity is observed across survey variables, it can be conceptualised as being related to pre-
existing differences in patterns of electricity usage. Our approach finds customers suspected, partly on the
basis of detailed past electricity usage information, of being prone to very high or low demand responses.
This demonstrates the potential for the estimation of more household-specific effects of new pricing
schemes. The increased availability of large amounts of data allows for more household specific targeting
of electricity pricing and other demand stimuli. This is similar to trends towards more personalised
estimation of treatment effects in other disciplines such as biomedical statistics and marketing.

Relatively few studies have conditioned upon past usage data when estimating treatment effects of
electricity pricing schemes. Some recent examples include a study using US data by Harding & Lamarche
(2016), who split the sample into low, medium, and high usage customers. The results suggest that
high usage customers decrease peak usage to a greater extent, which is somewhat expected since these
customers have more reducible usage. However, surprisingly low-income customers appear to increase
consumption in off-peak time periods. The authors speculate that this substantial load-shifting by low-
income customers is the result of moral licencing and note that this indicates the difficulty in anticipating
the impact of new pricing schemes for some customer segments.

Ito et al. (2015) investigate the effect of requests for voluntary energy reduction, and the effect of
dynamic pricing on electricity consumption during peak demand days in a smart metering trial in Japan.
The results suggest that, during the summer, higher income customers respond less than low income
customers to dynamic prices, but higher usage customers respond more than lower usage customers.

Some recent studies have used past electricity usage data for the estimation of household-specific
treatment effects. Bollinger & Hartmann (2015) condition upon the empirical distribution of past elec-
tricity usage and consider how a utility can gain from targeting based upon ite estimates. Balandat
(2016) estimates ites by comparing forecasts of electricity usage to realised usage during the trial period.

Data

The dataset used in this project is from the Electricity Smart Metering Customer Behavioural Trial
conducted by the Irish Commission for Energy Regulation (CER 2011). The cer note that this is “one
of the largest and most statistically robust smart metering behavioural trials conducted internationally
to date” (CER 2011). The dataset consists of half hourly residential electricity demand observations

8



Figure 1: Pre-trial average half-hourly demand for two households

for 4225 households over 536 days. The benchmark period began on 14th July 2009 and ended on 31st
December 2009. Households were then randomly allocated to either a control group or various tou
Pricing Schemes and Demand Side Management stimuli from 1st January 2010 to 31st December 2010.

All households were charged the normal Electric Ireland tariff of 14.1 cents per kWh during the
benchmark period. During the trial period the control group remained on the tariff of 14.1 cents per
kWh while the test group were allocated to tariffs a, b, c, or d 11. The tariffs a to d were structured as
shown in Table 1 below.

Table 1: tou Tariff details

TOU Tariffs Night Day Peak
(cents per kWh) 23.00-08.00 08.00-17.00 every day 17.00-19.00 Mon-Fri

19.00-23.00 every day Excluding holidays
17.00-19.00 weekends
and holidays

Tariff A 12.00 14.00 20.00
Tariff B 11.00 13.50 26.00
Tariff C 10.00 13.00 32.00
Tariff D 9.00 12.50 38.00

Households in the test group were also allocated to one of the following Demand Side Management
(dsm) stimuli: Bi-monthly detailed Bill; Monthly detailed bill; Bi-monthly detailed bill and In-Home
Display (ihd); Bi-monthly detailed bill and Overall Load Reduction (olr incentive.

The identification of ates depends upon unconfoundedness and overlap. The cer took a number of
steps to ensure that the samples for treatment groups were representative and did not exhibit notable
biases. A stratified random sampling framework was used with phased recruitment. Non-respondents and
attriters were surveyed and adjustments were made accordingly. Those who opted in were compared to
the national profile. The full dataset contains 4225 households, with 768 households in the control group
and 233 households facing the combination of tariff c and ihd stimulus, which will be the treatment

11There was also a Weekend tariff group, which we exclude from this study
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group of interest in this paper.
Figure 1 gives an example of average half hourly usage on weekdays before the trial period for house-

holds with similar survey responses. The two households both have four people in a 3 bedroom semi-
detached house, in which the chief earner is an employee and lower middle class with 3rd level education.
Both households also typically have one person at home during the day, own their home, have timed oil
heating, and have a similar stock of appliances. This figure shows that even households that are similar
across multiple characteristics do not necessarily have the same patterns of demand use. Therefore survey
variables are limited in describing demand heterogeneity12.

4 Results

Tariff c in combination with the In-Home Display (ihd) is the chosen treatment group, because the ihd
stimulus is of greater interest than the other information stimuli, and tariff c has more observations than
any other tariff combined with the ihd. The outcome variable is average half-hourly peak time electricity
consumption during the trial period (measured in kWh), excluding weekends.

Below we present two estimates of single causal trees as an example of the instability of single tree
estimates and small sample size. Causal forest Individual Treatment Effect ite estimates are then de-
scribed in terms of their association with pre-trial variables. Finally, variable importance measures are
presented in order to consider which variables are the strongest determinants of the structure of the trees
in the forest.

The standard ate estimates for the tariff c with ihd range from -0.073 to -0.092 kWh for an average
peak half hour, depending on the set of controls13. Mean half-hourly peak consumption for the control
group during the trial period (one full year) was 0.799 kWh, while mean peak consumption for all
households during the pre-trial period (half a year) was 0.828 kWh. Therefore these treatment effects
are of the order of 10% of peak consumption.

Causal Trees

Figures 2 and 3 show estimated honest causal trees. The set of potential splitting variables is given in
Table 2. The minimum number of treatment and control observations required for a leaf split is set to
ten. Half of the data is used for creating the splits in the tree, and half is used for honest estimation. The
only difference in estimation of the two trees is the seed for random number generation, which determines
the subsampling of the data into splitting and estimation data, and determines subsamples used for
cross-validation. The diagrams contain 95% confidence intervals.

It can be immediately observed from these trees that the partition of the data generated by the causal
tree algorithm is sensitive to the input data. This can be viewed as partly a sample size issue. Sample
size, in combination with sample splitting for honest estimation, also has implications for statistical
significance. There were 500 observations used for splitting, and 501 observations for estimation of
treatment effects. The causal tree output contains few subgroups with significantly non-zero treatment
effects at the 5% level14.

The above instability and functional form issues can be addressed by the use of a causal forest. The
instability of the output (i.e. sensitivity to the random separation of the data into splitting and estimation
subsamples) is less of a problem when aggregation of predictions occurs over a large number of honest
causal trees. Althoughindividual trees are fitted by the causal forest algorithm using a subsample of
the data, overall there is no wasted data, as all data points are very likely to be used in splitting for
some trees and in estimation for some other trees. In addition, forest estimates generally have improved
precision over single tree estimates, and non-linear associations between potentially many covariates and
the treatment effect are taken into account.

12In this paper we make use of pre-trial survey data, but we cautiously avoid using post-trial survey information. Prest
(2017) applies an adjusted causal tree method to this data, but the estimates are potentially biased by conditioning on
post-trial survey information. Our methods also differ from those of Prest (2017) in that we make use of a forest, which
should lead to estimates that are more stable with respect to training data.

13These results are obtained by linear regression of average peak usage on the treatment indication. The regression output
can be obtained from the authors on request.

14Furthermore, the low precision may be a result of the fact that, unlike in a linear model, we can’t directly include linear
past usage terms and other variables as controls that we know, a priori, can reduce errors considerably.
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Causal Forest

As noted in section 5, we fit a causal forest to the dataset containing control households and households
allocated to tariff c and the ihd stimulus (1001 households). The minimum number of treatment and
control observations required for a leaf split is set to five. Each individual honest tree is fitted using a
bootstrap sample consisting of half of the data, and half of this sample is used for splitting and half is
used for estimation. The number of individual trees fitted is 15000. For each tree in the forest, a random
subsample of one third of the set of covariates are used as potential splitting variables15.

Table 2: Potential splitting variables for Causal Trees and Causal Forest

Name of variable

Survey variables (categorical)
Age of respondent Sex of respondent
Class of chief income earner Regular internet use
Employment status of chief income earner Other reg. internet users
Number of bedrooms Education of chief earner
Type of home Electric central heating
Alone or other occupants Electric plugin heating
Own or rent the home Central water heating
Number of electric cookers - number Immersion water heating
Internet access Instant water heating
Approximate age of home Number of washing machines
Lack money for heating Number of tumble dryers
Number of dishwashers Number of instant electric showers
No. showers elec. pumped from hot tank Type of cooker
Number of plug-in convector heaters Number of freezers
Number of water pumps or electric wells Number of immersion water heaters
Number of small TVs Number of big TVs
Number of desktop PCs Number of laptop PCs
Number of games consoles Has an energy rating
Proportion of energy saving lightbulbs Prop. double glazed windows
Lagging jacket Attic insulation
External walls insulated

Electricity usage variables (continuous)
Mean usage Min. usage
Variance of usage Max. usage
Mean peak usage Mean nonpeak usage
Variance of peak usage Variance of nonpeak usage
Mean night usage Mean daytime usage
Variance of night usage Variance of daytime usage
Mean usage - weekdays Mean peak usage - weekdays
Variance of usage - weekdays Var. peak usage - weekdays
Mean night usage - weekdays Mean daytime usage - weekdays
Variance of night usage - weekdays Var. daytime usage - weekdays
Mean daily maximum usage Mean usage - weekends
Mean daily minimum usage Variance of usage - weekends
Mean of half-hour coefficients of variation Mean usage - each month (July-Dec)
Avg. night usage/ avg. daily usage Var. of usage - each month (July-Dec)
Avg. lunchtime usage/ Avg. daily usage Mean usage - each half-hour
Mean night usage - weekends Mean daytime usage - weekends
Variance of night usage - weekends Var. daytime usage - weekends

Tables 3 and 4 show the association between a set of variables and quartiles of ite estimates obtained
from the causal forest. Table 3 contains past consumption variables and gives averages for each quartile.

15Random Forests and Causal Forests should randomly subsample a set of potential conditioning variables at each split
within each tree, but the causalForest command in the R package causalTree currently only supports sampling splitting
variables for each tree, and the results are likely to be similar.
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Table 4 contains binary survey variables and gives the percentage of all observations in a quartile for
which the variable takes the value 1 (Yes). More detailed tables for categorical variables are included in
Appendix A.

Table 3: Pre-trial electricity consumption variable averages for quartiles of causal forest estimates of
household-specific Treatment Effect

Quartile of Estimated TE on Peak Usage
Variable Q1 Q2 Q3 Q4

Predicted TE (kWh) -0.13 -0.10 -0.07 -0.04
Avg. pre-trial half-hourly usage (kWh) 0.72 0.64 0.40 0.23

Avg. pre-trial peak half-hourly usage (kWh) 1.35 1.02 0.62 0.35
Var. of pre-trial half-hourly usage (kWh) 0.70 0.51 0.27 0.11

Var. pre-trial peak half-hourly usage (kWh) 1.23 0.79 0.42 0.19
Max half-hour elec. con. (kWh) 7.42 6.58 5.34 3.87
Min half-hour elec. cons. (kWh) 0.03 0.04 0.02 0.01

Mean daily max (kWh) 3.43 2.90 2.15 1.30
Mean daily min (kWh) 0.12 0.14 0.07 0.04

Table 4: Binary survey variable averages for quartiles of causal forest estimates of household-specific
Treatment Effect

Quartile of Estimated TE on Peak Usage
Variable Q1 Q2 Q3 Q4

Male 52% 54% 53% 48%
Internet access 86% 80% 57% 43%

Elec. central heating 3.2% 4.4% 5.2% 4.8%
Water immersion 61% 65% 50% 44%

Water centrally heated 13% 17% 14% 11%
Went without heat from lack of money 4.4% 3.6% 2.8% 3.6%

Lagging jacket on hot water 85% 83% 86% 77%
Higher Education 40% 39% 34% 28%

Employee 56% 49% 39% 33%
Apartment 0% 0.8% 2% 5.2%

Instantaneous water heater 0.8% 0.4% 1.6% 2%
Plug-in electric heater 2.8% 4% 4.8% 2.8%

The overall pattern of these results is encouraging, in that for the vast majority of covariates, we
observe patterns across quantiles of individual effects that we would expect a priori. This suggests that
the estimates can produce a reasonable characterisation of heterogeneity. Some patterns observable in
these tables and Appendix A are that the most responsive households (i.e. Quartile 1) generally use more
electricity, are more educated, younger, higher social class, and have more things that are associated with
higher income (e.g. internet access, appliances). This result is in agreement with the observation made
by Di Cosmo et al. (2014), using the same data, that more educated households are generally more
responsive16.

The patterns across lower class households, retired households, households for which the respondent
was over 65 years old in Table 6 of Appendix A indicate that groups that are more likely to contain
vulnerable customers (?) have a greater proportion of less responsive households. While this may be
largely due to the fact that these groups have less reducible peak usage, this difference in demand response
for vulnerable and non-vulnerable groups could be relevant to regulation of potential consumer targeting.

16Our focus on peak demand response is also justified by the observation by Di Cosmo & O’Hora (2017) that households
“reduced consumption rather than shifting consumption from peak”.
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(a) Standard splitting (b) Bucket splitting method

Figure 4: Density plots of causal forest household-specific estimates fitted using different sets of variables

It is noteworthy that the patterns of heterogeneity observed in both Tables 3 and 4 are largely main-
tained when the forest is fitted using only electricity consumption data. This suggests that electricity
consumption data contains information related to survey data information that can characterise hetero-
geneous groups of demand response17. This issue may be relevant to firms or policymakers who wish to
understand which information to collect in order to predict demand response.

Figure 4a is a density plot comparing the distributions of the ite estimates obtained by fitting causal
forests with different sets of potential conditioning variables. One forest was fitted using both survey
and usage variables, one forest was fitted using only usage variables, and one forest wad fitted using only
survey variables.

The results suggest that the usage variables are favoured by the causal forest algorithm and therefore
are more informative for characterising heterogeneity in causal effects. Furthermore, the density plot
suggests potential bimodality in the distribution of individual effects which is not noticeable from the
estimates produced by using survey variables alone. However, while it is most plausible that past usage
variables are more informative than survey variables, we must also consider the possibility that these
results are driven by the bias of variable selection towards continuous variables, which have more potential
splitting points.

Figure 4b gives a similar comparison of density plots of ite estimates, but for estimates which were
produced from causal forests with tree splits determined by the bucket splitting method described in the
methods section. The overall shape of the density plot obtained when using survey and usage variables
is still more similar to the density plot for usage only estimates than it is similar to the density of survey
only estimates.

It is of interest to check for possible non-linearity of estimated individual effects across continuous
variables. To this end Figures 5a and 5b show ites with confidence intervals ordered by size of estimated
effect, and by average pre-trial peak usage18. Note that the size of the interval is generally smaller for
households with smaller estimated ites. This suggests that more households are near these small ite
households in covariate space19, while large ite households may be more heterogeneous and have some
outlier covariate values. These are individual confidence intervals, not corrected for multiple hypothesis

17The results for causal forests fitted using only survey variables or only usage variables are not included in this paper,
but are available from the authors on request.

18This is produced by the causal forest command of the R package grf. See Wager & Athey (2017) for a description of
how these intervals are constructed. Each level of a categorical survey variable is represented by a separate binary potential
splitting variable because the package currently does not support finding optimal splits of multiple categories.

19Where the distance measure is created by the causal forest
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(a) 90% Confidence Intervals for ITEs ordered by size of
ITE

(b) 90% Confidence Intervals for ITEs ordered by pre-
trial average electricity consumption

Figure 5: 90% Confidence Intervals for ITE Estimates

testing.
The patterns in the figures 5a and 5b of ites with confidence intervals are unsurprising since higher

consumption households have more potential for demand reduction. Also, note that none of the individual
estimates are significantly positive, which accords with economic intuition.

Variable Importance

The first two columns of Table 5 gives the results for the standard variable importance measure detailed
in the methods section, which uses this improvement in the causal tree splitting criterion. This measure
takes surrogate splits into account. When a variable is a surrogate for a splitting variable, this approach
adds to the variable’s tree importance the concordance of that surrogate with the splitting variable
multiplied by the improvement from the split. This reduces masking of variables that are not used for a
split, but that are correlated with the splitting variable20.

The most important variables are electricity usage variables. The variable importance results suggest
that the trees most often split on variables that indicate the average level of weekday electricity consump-
tion at peak, night, and daytime non-peak hours. The most important survey variables are employment
status and a variable for the number of electric pumped showers. However, it may be preferable to
implement clear tests of variable importance. Permutation importance measures are appealing in this
regard.

Permutation Test for Variable Importance

Following the method of Altmann et al. (2010) for random forests21, and Bleich et al. (2014) for BART,
we compute p-values for the default variable importances provided by the grf package22. This involves
permuting the dependent variable 1000 times and obtaining variable importances for all variables from
1000 causal forests fitted separately using the 1000 permutations as dependent variables. The variable
importances are also obtained from a causal forest using the original, unpermuted dependent variable.
Then, following the “local” test described by Bleich et al. (2014), we obtain a p-value for each variable by
finding the proportion of the 1000 causal forests for which the variable had a greater variable importance
measure than that obtained from the causal forest with the unpermuted dependent variable.

If there is a bias towards continuous variables and variables with more categories, then such a bias
should also occur when the dependent variable is permuted, and therefore the p-value is unaffected
unless the extent of the bias dependent on the true importance of the variables. We investigate this issue
in further detail in Appendix B, which contains a simple simulation study of this permutation based

20The measure is provided for individual causal trees in the R package causalTree. This follows the approach used in the
regression tree R package rpart

21Altmann et al. (2010) show that p-values based on permutation of the dependent variable can address the issues of bias
towards variables with more categories, and masking of the importance of groups of highly correlated variables.

22While the variable importances in columns 1 and 2 of Table 5 are obtained from improvements in the splitting crite-
rion using causalForest from the causalTree package, we instead use the default variable importance measure provided for
causal forest in the grf package to increase computational speed.
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variable importance test. The simulations suggest that the p-values are potentially unaffected by the
bias of variable splitting towards variables with more possible splitting points.

The default variable importance measure for causal forest in the grf package is a count of the propor-
tion of splits on the variable of interest up to a depth of 4, with a depth-specific weighting23.

imp(xj) =

∑4
k=1

[∑
all trees number depth k splits on xj∑
all trees total number depth k splits

]
k−2∑4

k=1 k
−2

(7)

Columns 3 and 4 of Table 5 give the variable importances obtained from the causal forest with the
unpermuted dependent variable. These results are similar to those obtained in Columns 1 and 2, but
more strongly favour the continuous electricity usage variables. Therefore, it is useful to consider the
method for obtaining p-values described above, which could be less biased towards continuous variables.
Column 5 shows the p-values. The most notable results are that the electricity usage variables are most
important, except variables such as average usage in particular half-hours which one would not expect to
be important a priori. The ranking within continuous variables in column 5 is perhaps more reasonable
than that in Figure column 4, with the most important variable being average peak electricity usage
in the last month before the trial period. The rankings within survey variables in column 5 are also
reasonable, with variables that are likely to be correlated with income or level of electricity usage being
more significant.

It should be noted here that there can still be substantial heterogeneity in treatment effects across
groups defined by variables that do not have significant measured variable importance. For example,
while survey variables can be less informative than detailed electricity consumption information, they
can also be correlated with past consumption information. Therefore the heterogeneity of treatment
effects across survey variables can still be captured to an extent by ite estimates obtained from splitting
that occurs mostly on electricity consumption variables.

Therefore, this variable importance test does not allow us to conclude that there is not significant
heterogeneity of treatment effects across certain variables, but rather informs us which variables are
significantly selected by the causal forest algorithm for the purpose of estimating ites.

23In order to obtain variable importances for categorical variables, which currently must be entered into the causal forest
command as a set of binary variables for each level of the categorical variable, we take the sum of the variable importances
of the binary variables.

The parameters set for the causal forest command are num.trees = 15000, sample.fraction = 0.5, mtry =
floor(ncol(X covariates)/3), min.node.size = 5, honesty = TRUE, ci.group.size = 2 .
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causalForest variable importance grf variable importance p-value
attic insulated 0.04 water instantly heated 0 0.9
mean 01:00-01:30 usage 0.08 number of washing machines 0.17 0.95
mean 00:30-01:00 usage 0.1 unheated, lack of money 0.22 0.78
prop. elec. saving lightbulbs 0.14 electric plugin heating 0.25 0.27
mean 07:30-08:00 usage 0.16 electric central heating 0.34 0.95
mean usage - weekdays 0.86 prop. double glazed windows 0.42 1
mean 00:00-00:30 usage 1.3 number of electric cookers 0.52 1
variance daytime usage 1.37 number of tumble dryers 0.59 1
external walls insulated 1.51 number of dishwashers 0.73 1
mean 08:00-08:30 usage 1.8 number of immersion heaters 0.81 1
mean 05:00-05:30 usage 1.89 sex of respondent 1.08 1
variance nonpeak usage 2.03 type of cooker 1.08 1
mean h-h coef. of variation 2.12 attic insulated 1.12 1
lagging jacking 2.31 own or rent home 1.21 1
mean 04:00-04:30 usage 2.33 no. of elec. convector heaters 1.22 1
mean 05:30-06:00 usage 2.53 regular internet user 1.24 1
mean daytime usage 2.56 water pumped from elec. well 1.4 1
mean 02:00-02:30 usage 2.81 water immersion 1.41 0.99
no. of elec. convector heaters 3.19 number of instant elec. showers 1.47 1
water pumped from elec. well 3.31 other internet users 1.48 0.61
mean 06:00-06:30 usage 3.4 external walls insulated 1.49 1
number of desktop PCs 3.42 number of hot tank elec. showers 1.63 1
mean 03:30-04:00 usage 3.75 water centrally heated 2.12 0.98
min. half-hourly usage 3.86 lagging jacking 2.16 0.74
number of freezers 4.02 age of home 2.39 1
number of instant elec. showers 4.39 has an energy rating 2.85 0.6
variance of usage 4.91 number of small TVs 3.01 1
number of big TVs 4.96 number of games consoles 3.29 0.85
number of games consoles 5.1 lives alone 3.39 0.82
prop. double glazed windows 5.64 mean 02:30-03:00 usage 4.03 1
max. half-hourly usage 5.73 type of home 4.06 1
mean 08:30-09:00 usage 6.29 age of respondent 4.25 1
var. usage - weekdays 6.52 education 4.26 1
mean 03:00-03:30 usage 7.72 mean 12:00-12:30 usage 4.28 1
has an energy rating 8.97 number of bedrooms 4.52 0.96
mean 01:30-02:00 usage 9.69 prop. elec. saving lightbulbs 4.56 1
mean nonpeak usage 9.69 internet access 4.94 0.1
mean of usage 10.08 mean 03:30-04:00 usage 4.96 1
number of laptop PCs 10.44 mean 06:00-06:30 usage 5.3 1
mean 09:00-09:30 usage 12.29 mean 03:00-03:30 usage 5.4 1
mean 02:30-03:00 usage 15.9 mean 00:30-01:00 usage 5.7 1
var. night usage - weekends 23.13 mean 05:30-06:00 usage 6.01 1
mean 04:30-05:00 usage 25.78 mean 04:30-05:00 usage 6.03 1
mean 16:00-16:30 usage 26.07 mean 01:30-02:00 usage 6.29 1
mean 17:00-17:30 usage 27.02 mean 11:00-11:30 usage 6.46 1
mean daily min. usage 28.03 mean 04:00-04:30 usage 6.54 1
mean 17:30-18:00 usage 28.56 mean 05:00-05:30 usage 6.73 1
mean 18:30-19:00 usage 28.87 number of desktop PCs 7.16 0.12
mean 18:00-18:30 usage 29.28 mean night usage - weekends 7.24 0.97
variance night usage 29.51 social class 7.51 0.7
mean July peak usage 29.74 number of big TVs 7.76 0.53
mean 06:30-07:00 usage 30.99 mean 01:00-01:30 usage 7.91 1
mean 15:30-16:00 usage 31.99 employment 7.93 0.57
mean September peak usage 32.25 mean 11:30-12:00 usage 8.1 0.99
mean 19:00-19:30 usage 32.69 mean 02:00-02:30 usage 8.1 0.98
mean November peak usage 32.81 mean 12:30-13:00 usage 8.15 1
var. August peak usage 33.2 mean night usage 8.2 0.88
number of washing machines 33.87 mean night usage - weekdays 8.88 0.91
mean 20:00-20:30 usage 34.29 mean of usage 8.99 0.18
mean 13:30-14:00 usage 35.56 mean night / mean day usage 9.09 1
mean 19:30-20:00 usage 35.69 mean nonpeak usage - weekdays 9.14 0.29
var. November peak usage 35.92 mean nonpeak usage 9.38 0.22
mean 09:30-10:00 usage 36.4 mean 13:30-14:00 usage 9.41 0.95
mean 20:30-21:00 usage 36.68 mean 14:00-14:30 usage 9.41 0.92
mean 14:00-14:30 usage 36.97 mean usage - weekdays 9.57 0.19
mean August peak usage 39.59 mean 07:00-07:30 usage 9.91 1
age of home 40.15 mean usage - weekends 10.02 0.23
mean 13:00-13:30 usage 40.68 number of freezers 10.02 0.09
mean 07:00-07:30 usage 40.77 mean h-h coef. of variation 10.51 1
var. September peak usage 40.78 mean daytime usage 10.83 0.19
number of bedrooms 40.9 variance night usage 11.03 0.98
mean 15:00-15:30 usage 41.1 mean 10:30-11:00 usage 11.33 0.94
own or rent home 41.21 mean 22:00-22:30 usage 11.4 0.76
mean 21:00-21:30 usage 41.43 mean 13:00-13:30 usage 11.82 0.86
variance peak usage 42.06 var. night usage - weekdays 11.86 0.99
mean 10:30-11:00 usage 42.13 mean 23:00-23:30 usage 12.09 0.93
number of small TVs 42.9 mean 14:30-15:00 usage 12.11 0.8
type of home 43.36 var. night usage - weekends 12.17 0.98
electric central heating 44.66 mean 21:30-22:00 usage 12.26 0.63
education 44.82 number of laptop PCs 12.56 0.19
mean peak usage 45 mean 22:30-23:00 usage 12.7 0.81
mean 14:30-15:00 usage 45.12 mean 06:30-07:00 usage 12.72 0.97
mean night usage 45.36 mean daytime usage - weekends 12.78 0.1
number of dishwashers 45.38 mean 00:00-00:30 usage 13.66 0.89
mean 12:30-13:00 usage 45.4 mean daytime usage - weekdays 14.16 0.12
other internet users 45.44 variance nonpeak usage 14.23 0.19
mean daily max. usage 45.54 var. nonpeak usage - weekdays 15 0.26
var. December peak usage 45.84 mean daily min. usage 15.84 0.9
mean 10:00-10:30 usage 46.8 mean 10:00-10:30 usage 15.89 0.64
electric plugin heating 46.85 mean 23:30-00:00 usage 15.9 0.78
mean 12:00-12:30 usage 47.19 mean 07:30-08:00 usage 16.37 0.98
mean 21:30-22:00 usage 47.5 min. half-hourly usage 16.51 0.88
mean 11:00-11:30 usage 48.6 variance daytime usage 16.58 0.14
lives alone 48.65 mean lunchtime / mean day usage 16.61 1
mean 11:30-12:00 usage 50.24 mean 18:00-18:30 usage 16.82 0.34
mean 22:00-22:30 usage 50.95 var. daytime usage - weekdays 17.6 0.18
unheated, lack of money 51.56 mean 21:00-21:30 usage 17.61 0.26
var. October peak usage 51.7 mean 09:00-09:30 usage 18 0.69
internet access 52.08 variance of usage 18.14 0.05
water centrally heated 52.25 var. usage - weekdays 18.29 0.06
mean 16:30-17:00 usage 52.6 max. half-hourly usage 18.53 0.87
mean 22:30-23:00 usage 52.7 mean 19:00-19:30 usage 18.67 0.21
type of cooker 53.21 mean 19:30-20:00 usage 19.41 0.15
water instantly heated 53.31 mean 16:00-16:30 usage 19.46 0.44
regular internet user 53.37 mean 20:00-20:30 usage 20.3 0.08
water immersion 54.64 mean 15:00-15:30 usage 21.12 0.28
mean 23:00-23:30 usage 54.82 var. usage - weekends 21.89 0.08
var. July peak usage 55.12 mean November peak usage 22.02 0.18
number of electric cookers 55.44 mean 18:30-19:00 usage 22.3 0.1
mean 23:30-00:00 usage 57.26 mean 08:00-08:30 usage 22.37 0.69
number of immersion heaters 57.53 mean 09:30-10:00 usage 23.8 0.37
mean night / mean day usage 59.33 var. daytime usage - weekends 23.94 0.06
mean December peak usage 59.96 mean 16:30-17:00 usage 24.27 0.36
social class 61.34 var. November peak usage 25.8 0.3
mean October peak usage 62.19 mean 15:30-16:00 usage 27.1 0.17
mean night usage - weekends 62.44 mean daily max. usage 27.36 0.04
var. daytime usage - weekdays 62.5 mean 08:30-09:00 usage 30.15 0.33
var. nonpeak usage - weekdays 64.71 mean peak usage - weekdays 33.35 0.03
number of tumble dryers 71 mean peak usage 34.52 0.01
age of respondent 71.25 mean 20:30-21:00 usage 36.62 0.01
mean lunchtime / mean day usage 71.33 variance peak usage 40.62 0.01
sex of respondent 71.68 var. peak usage - weekdays 40.73 0.05
mean nonpeak usage - weekdays 74.69 var. December peak usage 40.75 0.1
number of hot tank elec. showers 75.34 mean September peak usage 47.41 0.02
mean usage - weekends 78.1 mean 17:00-17:30 usage 52.63 0.01
employment 78.23 mean December peak usage 53.13 0
var. daytime usage - weekends 80.36 mean July peak usage 53.33 0.03
mean daytime usage - weekends 82.81 mean 17:30-18:00 usage 53.36 0
mean night usage - weekdays 85.08 mean August peak usage 54.18 0.01
var. peak usage - weekdays 87.83 var. July peak usage 55.36 0.1
var. usage - weekends 91.21 var. September peak usage 56.17 0.04
mean daytime usage - weekdays 94.64 mean October peak usage 64.96 0
var. night usage - weekdays 95.61 var. August peak usage 71.73 0
mean peak usage - weekdays 100 var. October peak usage 100 0

Table 5: Variable Importance results
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5 Conclusion

In this paper, we have applied, to electricity smart meter data, some recently developed methods for
characterising heterogeneity of treatment effects. Findings relevant to the application include the pos-
sibility that past electricity usage can be more informative than, or add to information provided by,
survey variables in characterising heterogeneity of demand response and possibly in predicting individual
household response.

In principle, with sufficient data, a single causal tree could be viable approach for describing the
heterogeneity of electricity demand response. Tree based methods, as discussed in the methods section,
have a number of advantages relative to other methods that can be applied to this task. Unfortunately,
larger samples may be required in order to obtain informative partitions of the data that are stable with
respect to sample splitting, particularly when the sample size is reduced by honest estimation. In this
paper, random sample splitting had a strong influence on the structure of single trees.

We also applied the causal forest method to the data, which produced more stable household estimates,
but the output is more difficult to interpret. The issue of choosing between instable, interpretable single
trees and stable, less interpretable forests with stronger predictive performance is a known issue in the
application of standard classification and regression trees.

The causal forest results suggest that younger, more educated households that consumer more elec-
tricity exhibit greater demand response to new pricing schemes. Variable importance measures and
predictions produced using different sets of covariates suggest that the causal forest algorithm appears
to favour using certain past electricity consumption variables rather than survey information to describe
heterogeneity.

We caution against placing too much emphasis on patterns observed in Tables 3 and 4 for individual
covariates, or on tests of differences between the covariate means for the highest and lowest quartiles.
There is a risk of finding spuriously significant results due to multiple hypothesis testing and post-hoc
searching across these covariates. This issue can be avoided by restricting attention to a few covariates
specified a priori, and methods for valid inference on these features of the cate function are described
by Chernozhukov et al. (2017). However, part of the motivation for methods such as causal trees is that
the methods can find unknown drivers of heterogeneity. Therefore there is a challenge in combining, on
the one hand, avoidance of problems of post-hoc multiple hypothesis testing when attempting to obtain
valid inference on descriptions of heterogeneous ites, and on the other hand making use of the ability of
machine learning methods to discover unknown drivers of heterogeneity from large sets of covariates24.
Ideally, future research would describe an approach that can discover the key drivers of heterogeneity,
and then still provide valid inference on features of the cate related to these variables.

24While variable importance can directly make use of the search for drivers of heterogeneity carried out in binary splitting,
other approaches include applying further regression or classification methods on the ite estimates, for example in papers
by Foster et al. (2011), Powers et al. (2017) and Hahn et al. (2017)
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A Covariates by Quartiles of CF Estimates

Tables 6 and 7 give the proportion of respondents in different combinations of a categorical survey
response and quartile of ite estimates. For the proportion of an individual quartile in different categories
of a survey response, one can simply multiply the percentages by four. The tables give an overview of
the association between covariates and the treatment effect predictions, and also indicate the extent to
which the quartiles of causal forest estimates can be used to identify distinct groups of demand response
households.

Table 6: Survey response categories by for quartiles of causal forest estimates of household-specific
Treatment Effects

Variable Quartile of Estimated TE on Peak Usage

Age Q1 Q2 Q3 Q4

18-25 0.1% 0% 0.1% 0.1%
26 - 35 2.3% 2.5% 2.8% 2.2%
36 - 45 6.0% 5.3% 3.5% 3.9%
46 - 55 8.3% 6.1% 4.6% 4.4%
56 - 65 5.8% 5.1% 4.6% 4.4%

65+ 2.4% 5.7% 9.4% 9.8%
Refused 0.2% 0.3% 0% 0.2%

Class Q1 Q2 Q3 Q4

AB 4.4% 4.3% 1.8% 1.5%
C1 7.4% 6.4% 6.6% 5.3%
C2 4.7% 4.9% 4.8% 3.2%
DE 8.0% 8.6% 10.6% 14.1%

F 0.5% 0.5% 0.7% 0.8%
Refused 0.1% 0.3% 0.5% 0.1%

Employment Q1 Q2 Q3 Q4

Employee 14.0% 12.3% 9.8% 8.3%
Self-emp (with emps) 1.8% 2.4% 0.7% 0.3%

Self-emp (with no emps) 1.8% 1.2% 1.5% 0.8%
Unemp (seeking work) 1.6% 0.2% 1.1% 1.8%

Unemp (not seeking work) 1.0% 0.8% 0.6% 1.1%
Retired 4.4% 7.9% 11.2% 12.4%

Carer 0.5% 0.2% 0.1% 0.3%

Education Q1 Q2 Q3 Q4

No formal education 0.4% 0.2% 0.4% 0.4%
Primary 2.2% 2.9% 3.0% 5.4%

Secondary - junior cert 3.7% 4.3% 3.9% 4.5%
Secondary - leaving cert 7.6% 6.5% 8.2% 6.2%

Third level 10.1% 9.7% 8.4% 7.0%
Refused 1.1% 1.4% 1.1% 1.5%

Other residents Q1 Q2 Q3 Q4

Lives Alone 0.5% 2.0% 6.3% 13.5%
All people over 15 13.0% 15.1% 14.8% 9.5%

Both adults and children 11.6% 7.9% 3.9% 2.0%

Number of bedrooms Q1 Q2 Q3 Q4

1 0% 0.3% 0.2% 1.2%
2 0.4% 1.3% 2.2% 6.0%
3 8.3% 8.8% 13.2% 12.2%
4 11.5% 11.4% 7.7% 4.3%

5+ 4.9% 3.1% 1.6% 1.3%
Refused 0% 0.1% 0.1% 0%

Own or rent Q1 Q2 Q3 Q4

Rent (private landlord) 0.3% 0.2% 0.5% 0.8%
Rent (local authority) 1.0% 0.8% 0.9% 2.1%

Own Outright 12.6% 12.9% 16.0% 15.3%
Own with mortgage 11.2% 11.0% 7.5% 6.6%

Other 0% 0.1% 0.1% 0.2%
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Table 7: Survey response categories by for quartiles of causal forest estimates of household-specific
Treatment Effect - Appliance variables

Variable Quartile of Estimated TE on Peak Usage

Number of washing machines Q1 Q2 Q3 Q4
None 0.1% 0.3% 0.1% 1.3%
One 24.5% 24.4% 24.8% 23.6%
Two 0.5% 0.3% 0.1% 0.1%

Number of tumble dryers Q1 Q2 Q3 Q4
None 2.3% 5.9% 9.3% 14.8%
One 22.6% 19.0% 15.7% 10.2%
Two 0.2% 0.1% 0% 0%

Number of Dishwashers Q1 Q2 Q3 Q4
None 3.5% 5.1% 10.7% 16.1%
One 21.5% 19.9% 14.3% 8.9%
Two 0.1% 0% 0% 0%

No. of instant elec. showers Q1 Q2 Q3 Q4
None 6.2% 6.5% 7.6% 11.0%
One 16.5% 16.8% 16.6% 13.3%
Two 1.9% 1.4% 0.8% 0.7%

More than Two 0.5% 0.3% 0% 0%
Number of Electric Cookers Q1 Q2 Q3 Q4

None 2.9% 4.7% 5.6% 9.5%
One 22.1% 20.3% 19.3% 15.5%
Two 0.1% 0% 0.1% 0%

Immersion Q1 Q2 Q3 Q4
None 4.4% 5.1% 6.3% 8.5%
One 20.5% 19.9% 18.7% 16.4%
Two 0.2% 0% 0% 0.1%

No. of large TVs Q1 Q2 Q3 Q4
None 3.0% 3.3% 4.9% 7.8%
One 11.3% 11.1% 13.4% 13.3%
Two 8.3% 6.6% 6.3% 3.3%

Three 2.0% 2.8% 0.4% 0.5%
More than three 0.5% 1.2% 0% 0.1%

No. of laptop PCs Q1 Q2 Q3 Q4
None 8.9% 9.5% 13.8% 16.2%
One 11.8% 11.7% 10.0% 8.2%
Two 3.4% 2.4% 0.8% 0.5%

Three 0.8% 1.0% 0.3% 0%
More than three 0.2% 0.4% 0.1% 0.1%

Approx. prop. saving lightbulbs Q1 Q2 Q3 Q4
None 4.3% 5.2% 5.5% 7.5%

A quarter 7.1% 6.0% 6.1% 5.7%
A half 4.5% 4.5% 4.5% 4.1%

Three quarters 5.1% 4.9% 4.1% 3.4%
All 4.1% 4.4% 4.8% 4.3%
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(a) Null simulation var.
imp.

(b) Simulation 1 var. imp. (c) Simulation 2 var. imp.

Figure 6: Boxplots of simulation study variable importances, 100 permutations, 100 iterations

(a) Null simulation p-values (b) Simulation 1 p-values (c) Simulation 2 p-values

Figure 7: Boxplots of simulation study p-values, 100 permutations, 100 iterations

B Simulation Study - Variable Importance Permutation Test

We present a simulation study investigating the extent to which p-values for a permutation-based variable
importance test are influenced by the bias of the bias of the variable importance measure towards con-
tinuous variables and categorical variables with more categories. This study is designed in a similar way
to that used by Strobl (2008) for investigating the bias of random forest variable importance measures.

First, we generate the following covariates: X1 ∼ N(0, 1), X2 ∼ Cat(2), X3 ∼ Cat(4), X4 ∼
Cat(10), X2 ∼ Cat(20), treatment ∼ Cat(2), where Cat(k) denotes a categorical distribution with k
categories of equal probability. Then we separately consider the following outcomes:

For the null case, Y ∼ N(0, 1)
For simulations 1 and 2, the dependent variable is defined in a similar way to a simulation study

carried out by Athey & Imbens (2016): Y = η(X) + 1
2 (2treatment− 1)κ(X) + ε, where ε ∼ N(0, 1) . For

simulation 1 η(X) = 0, κ(X) = X2, and for simulation 2 η(X) = 1
2X1 +X2, κ(Xi) = X2.

Following the approach of Strobl (2008), we repeat these simulations, obtaining sets of p-values 100
times, and then present boxplots of the p-values for each variable. The p-values are obtained using 100
permutations of the dependent variable25.

The boxplots of variable importances obtained using the unpermuted dependent variable are shown
in Figure 6. The boxplots for the p-values are shown in Figure 7. While the variable importance correctly
identifies x2 as the most important variable, the variables x1, x4, and x5 generally have a greater variable
importance values than x3. In contrast, the permutation test does not exhibit this bias. Furthermore,
the variable importance measure for x2 is the largest in approximately 90% of simulations (excluding the
null simulations), while the p-value for x2 is the smallest in approximately 0.99% of simulations.

25The parameters for the causal forest are:
num.trees = 5000, sample.fraction = 0.5, mtry = floor(ncol(X covariates)/3), min.node.size = 5, honesty =

TRUE, ci.group.size = 2
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