

Net zero levels of innovation: what is needed?

24 September 2019

What is Energy Systems Catapult?

Mission: Unleash innovation and open new markets to capture the clean growth opportunity

Innovation experts

Hubs in Birmingham and Derby

Established and overseen by Innovate UK. Independent from Government. Not for profit

Bridge the gap between stakeholders in the sector

A place to develop and test new ideas -Supporting Research Trials innovators Lual mole systems view 01010 10101 01010 Systems Digital engineering take Ne Modelling and simulation 9 Energy Systems Catapu

What is whole systems thinking?

ංඋ ď Joining up the system 8 + +╋ +from sources of energy to the consumer Distribution Buildings Generation Transmission Consumer Breaking down silos 00000 Jeeoo between energy + + (Land vectors Electricity Heat Transport Joining up physical requirements of the **(\$**) 0 ++╋ system, with policy, (\diamond) market and digital arrangements Policy Digital Market Physical System System System

Key messages

- 80% target was hard. Net Zero is very hard
- Modelling can get only you so far. Significant unknown is how consumers will respond to necessary changes
 - Heating, Transport
- Broad consensus on key technology options needed. Inc. CCS, biomass, nuclear, offshore wind, low-carbon heating (electrification, district heating, hydrogen), EVs. But inherent uncertainty about 'right' mix
- Net Zero very unlikely to happen without robust policy. An ecosystem of low carbon regulation, planning/co-ordination, markets, pricing, innovation required
 - Inc. need for more granular price signals (Rethinking Electricity Market Design)
- Understanding the opportunities and risks of digitalisation is essential

Context: Decarbonising heat is going to require significant changes to our economy

KAORK

2035 2040

£ 200

PATCHWORK

The challenge

At the current rate of conversion, it would take...

1000 to 2000 years

How to decarbonise heat: our hypothesis

Start with the consumer, not the technology

Digitalisation offers significant potential (and some risk)

Heat as a service could be a powerful proposition

Understanding different local energy systems is essential

Heat decarbonisation will require significant market changes/policy drivers

Energy Systems

Consumers discover the service they want through experience

Heat Plans: a starter-for-ten energy service

© 2019 Energy Systems Catapult 10

Offered households the chance to 'buy' Heat as a Service

Controls	Schedule	Reports	Plans	Settings
← All	Heat Pla	ns		
Unlimi No limit	ited s to your he	ating.	£17.5 Week	60
1. Your your wii you do	ndows and o	doors, but p n, we may	cost of oper please be fai need to incre nat is fair?	r. lf
0.1/	Heat Plan v contract	veekly cost	is based on cel your Hea	

Everyone enjoyed better control, but they used it very differently **CATAPULT** (e.g. temperature)

Cool Conservers

Often adjust temperature to try and cut bills

Hot and Cold Fluctuators

Often adjust temperature to get comfortable

On-Demand Sizzlers

Some like it hotter or want to spend more than others in their home

Steady and Savvy

On-off Switchers

Turn it on and off to try and make sure home is only warm when someone is in

Toasty Cruisers

Love feeling cosy and prefer not to put clothes on if they're cold If energy services could guarantee people got the comfort they wanted, they might not care how it was delivered

Demonstrated the potential of richer consumer data to offer households better products and services, including tailored retrofits that prepare their homes for low carbon heat

Some of the toughest challenges for decarbonisation will likely require local and regional coordination and action

How to decarbonise buildings and what combinations of fabric upgrades, heating systems and infrastructure in different local areas

The future of the gas network (including the potential of hydrogen)

How to minimise the costs of the transition for consumers, including integration of electric vehicles and low carbon heating

Developed a structured & repeatable framework

Understand **local options and choices for heat** in whole system context

Collaboratively develop a **long term evidence based plan** to decarbonise

Resulting in data and insight to target innovation and deployment projects

Local Perspective Proportion of different heating solutions by 2050 in different local areas

<i>.</i>						
Modelled Heat Pump uptake	NCC	BCBC	GM Bury			
Existing Homes	125,000	60,000	80,000			
Low Temp Heat Pump	19,000	1,000	16,500			
High Temp Heat Pump	25,000	25,000	20,000			
Ground Source	6,000	15,000	16,500			
Hybrid Heat Pump	12,500	4,000	4,000			
* Numbers given are indicative only based on stakeholder inputs to Local Area Energy Planning engagement						

* Numbers given are indicative only based on stakeholder inputs to Local Area Energy Planning engagement

Local Authority Area

42.4 MtCO,e

Rethinking Decarbonisation Incentives recommendations: market driver for low carbon heat is a crucial gap

With unmanaged charging, consumers charge at existing peak times (16:00-19:00)

Consumers, Vehicles and Energy Integration

FΙ

• Without intervention, plug-in vehicles likely to accentuate existing peaks in electricity demand

elementenergy

Could lead to issues in supply-demand balancing or local network capacity

cenex

Baringa

energy

technologies

evconne

Managed charging is effective at shifting demand away from peak times

THE

BEHAVIOURAL

INSIGHTS TEAM

evconne

Consumers, Vehicles and Energy Integration

Average energy delivered, per participant, per hour of the day

elementenergy

- UMC shifted charging to later in the evening; SMC shifted charging into the overnight period
- UMC and SMC-type systems can be effective solutions for managing demand

cenex

edf

Baringa

energy

technologies

Role of Demand Management

- Total demand winter weekday 2030
- Trial participants appear responsive to tariffs

Significant ability to manage load

Potential UMC 'herding' impacts

elementenergy

THE BEHAVIOURAL INSIGHTS TEAM

Today – digitalisation is starting to change energy market

But risks creating multiple bespoke solutions and "lock-in"

Open Interoperable & Competitive Market

Future energy/heat system needs to be interoperable in different ways

Consumer

ensuring that provisions exist for consumers to switch between both different commercial offers and technology choices.

Commercial

to ensure that incentives are aligned across the energy system to ensure that value can flow where it needs to, driven by market forces.

Data

to ease the sharing and portability of data between different systems.

Devices

Physical

to ensure that end-to-end systems function as changes happen to parts of the system.

to ensure that energy provision across gas, electricity, heat, transport fuels etc. are com

electricity, heat, transport fuels etc. are compatible with one-another and that coordination occurs in a timely fashion.

Need to learn from the success of the telecoms sector

Key technologies and innovations for net zero

- Broad consensus on key technologies These include CCS, biomass, nuclear, offshore wind, low-carbon heating (electrification, district heating, hydrogen) and low-carbon transport solutions (electrification)
 - Innovation is important in these areas, but increasing the availability and deployment of these technologies is critical and in some cases (e.g. CCS) significantly more valuable than innovation per se
- Innovation is likely to deliver most value in terms of reducing overall energy system transition costs:
 - **Transport** specifically cost reduction in low carbon light vehicles (e.g. EVs and batteries specifically), HGVs
 - Nuclear (in particular Small Modular Reactors) accelerating cost reduction, developing heat recovery systems to enable the provision of heat for district heating, etc
 - **Offshore Wind** continued cost reduction, particular focus on floating offshore wind technology
 - Low carbon heat solutions improvements in the quality, performance and cost of heat pumps, building fabric improvements, supply chain and technical innovations within new-build and retrofit markets, etc
 - **Biomass** improving resource availability through more sustainable land management practices, yield improvements, etc
 - **Hydrogen** whole value chain improvements in low carbon / low cost hydrogen production (primarily via biomass with CCS)
- Some technologies that are likely to have been undervalued in ESC analysis (e.g. technologies delivering system flexibility services, including some types of energy storage). Further analysis is needed.
- Understanding the risks and opportunities of **digitalisation** will be central to the transition

Key messages

- 80% target was hard. Net Zero is very hard
- Modelling can get only you so far. Significant unknown is how consumers will respond to necessary changes
 - Heating, Transport
- Broad consensus on key technology options needed. Inc. CCS, biomass, nuclear, offshore wind, low-carbon heating (electrification, district heating, hydrogen), EVs. But inherent uncertainty about 'right' mix
- Net Zero very unlikely to happen without robust policy. An ecosystem of low carbon regulation, planning/co-ordination, markets, pricing, innovation required
 - Inc. need for more granular price signals (Rethinking Electricity Market Design)
- Understanding the opportunities and risks of digitalisation is essential

Guy Newey, Director of Strategy and Performance <u>guy.newey@es.catapult.org.uk</u> @guynewey