

Investing in your future Project supported by the INTERREG IVA Programme Managed by SEUPB

Department of Communications, Energy and Natural Resource Roinn Cumarsáide, Fuinnimh agus Acmhainní Nádúrtha

Fraser of Allander Institute Sir William Duncan Building 130 Rottenrow Glasgow, G4 0GE T: +44 (141) 548 3838 F: +44 (141) 548 5776 E: grant.j.allan@strath.ac.uk W: www.strath.ac.uk/fraser

Coordination Centre: Scottish Association for Marine Science, Oban, Scotland

T: +44 (0)1631 559000 F: +44 (0)1631 559001 E: biomara@sams.ac.uk W: www.biomara.org

BioMara

Modelling the regional economic impacts of biofuels

Lessons from non-marine derived biofuels for marine algae production in Northern Ireland, the Border region of Ireland and Western Scotland

Grant Allan

Fraser of Allander Institute, Department of Economics, University of Strathclyde

8th BIEE Academic Conference, St John's College, Oxford 22nd-23rd September 2010

Recent increase in biofuels production (1)

Figure 1: Fuel ethanol production in the US, 1980-2009 (millions of gallons p.a.)

Source: Renewable Fuels Association (2010)

Recent increase in biofuels production (2)

BîoMara

Figure 2: EU biodiesel production 2002 to 2009, 000 tonnes

Source: European Biodiesel Board (2010)

Regional dimension

BioMara

Why biofuels?

• Lower greenhouse gas emissions from transport

• Improve energy security by lowering imports/increasing diversity of fuel supply

• Improve rural development by supporting farm crop income

- "Triple-dividend" not apparent from evidence to date
 - Land use changes damaging greenhouse gas savings
 - Diverting food materials to energy feedstocks, pushing up food prices

Biofuels in the UK

- UK biodiesel production in 2009, 1.5% of EU total
- Road Transport Fuel Obligation (RTFO) requires suppliers to produce certificates for annually increasing share of fuels supplied
 - 3.25% in 2009/10
- Assessment of first year of RTFO (2008/9) shows
 - 2.7% of UK fuels from biofuels
 - 5% of biofuels produced in the UK
 - 4% of UK oilseed rape crop, 8% of UK sugar beet crop
 - Imported biodiesel from the US, Germany, and bioethanol from Brazil

Outline of presentation

1. Fixed-price regional models and applications to biofuels

- Input-Output and Social Accounting Matrix approaches used
- 2. Computable General Equilibrium (CGE) models and applications to biofuels
- 3. Discussion of modelling approaches
- 4. Future research plans

BioMara 1. Single-region IO modelling

Exogenous demands "drive" regional output through Leontief inverse

$$X = (I - A)^{-1}Y \longrightarrow \Delta X = (I - A)^{-1}\Delta Y$$

where

 $\overline{|a_{ij}|} = x_{ij} / X_{j}$

Sectoral "Multipliers" show impact of £unit of final demand for sectors output on region

Where facility is not already represented in the economy, need to create a new sector, which sees the new (exogenous) final demand

Research then focuses on linkages between biofuels industry and regional economy

Technology choice may drive regional inputs, and so, regional impacts.

Introducing a new sector in IO

BioMara

	Agric	Alghricu	i ₽ilr @nd	gðil ertældas e	Reference til oppet i	Refi	Neon-petvice s	Station service s	BIOFUELS	Total in	teonalianed ane and	- Fialadeenaand	Gross outpou
Agineuluture		271	271	1	1	0	63 0	6 3 99	a ₁₆ X ₆	199	110,1 +@2 6 X6	1,5971 597	2,699
Oillanddagas×exertartion		1	1	76	76	820	<u>520</u>	50430	a ₂₆ X ₆	30	14 3,14326 ×6	1,2511 251	2,683
Refinedoptetrol		32	32	14	14	57	2576	274628	a ₃₆ X ₆	428	808 808 6×6	1,2001 200	2,008
Nonseenvice		239	239	526	526	62	91 62	9, 1352 4	a ₄₆ X ₆	3,534	13 53,3543 6X6	35,96225,962	49,5045
Services		398	398	753	753	98	48 98	4,285234	a ₅₆ X ₆	8,244	34 346346 6×6	79,715 9,715	114,06,1
BIOFUELS									a ₆₆ X ₆		a ₆₆ X ₆		Х ₆
Total intermediate purchases		941		1369		1038	15447	32435			51230	119,726	
Imports to RUK			519		463		642	8,882	ļ	0,745	21,250	15,775	37,025
Imports to BAOW		519	234	463	165	642	88 49	4,17007415	a _{ruk} X ₆	4,977	10,1 25 250	8,5755 775	18,701
NetotaxtesROWproduct and prod	uctio	- 234	65	165	11	49	47 84	84927	a _{row} X ₆	3,638	4, 510 125	8,1428 575	12,653
Qampessatjoodofemployeestio		-65	399	11	614	84	18740	11,936788	a _t X ₆	0,088	53,244511	- 8 142	53,244
Cuopsergeneratingrephopeles		399	671	614	62	176	119 6 8	7,400088	a _{coe} X ₆	2,178	30,596244		30,596
Erstal apienany isonytas		671	1,758	62	1,314	18	78560	34 <u>,</u> භූතු <mark>ව</mark> ැන	a _{ova} X ₆	1,626	119,7 26 596	32,492 _	152,219
Total primary inputs		1758		1314		970	34058	81626	į		119726	32 492	
Total gross inputs			2,699		2,683		2,008	49,505		4,061	170,957	152,219	323,175
Total gross inputs		2699		2683		2008	49505	114061	X ₆		170957	152,219	

Biom Assumptions of demand-driven IO modelling

- Fixed coefficient production technology with constant returns to scale
- Fixed coefficients in consumption (when consumption endogenous)
- No supply constraints (for endogenous sectors)

Necessary "ad-hoc" adjustments?

BioMara

• "World is not as simple as demand-driven, fixed-proportions

inpute output model" Low and locarman (2000)

									$\wedge_2 = \wedge$
	Agriculture	Oil and gas extraction	Refined petrol	Non-service s	Services	BIOFUELS	Total intermediate demand	Final demand	Gross output
Agriculture	271	1	0	631	199	R 16X6	1101+a16X6	1,597	X ₁ *
Oil and gas extraction	1	76	820	504	30	a ₂₆ X ₆	1431+a26X6	1,251	X ₂ *
Refined petrol	32	. 14	57	276	428	a ₃₆ X ₆	808+a36X6	1,200	X ₃ *
Non-service	239	526	62	9182	3534	a ₄₆ X ₆	13543+a46X6	35,962	X4*
Services	398	753	98	4853	28244	a ₅₆ X ₆	34346+a56X6	79,715	X5*
BIOFUELS						a ₆₆ X ₆	a ₆₆ X ₆		X ₆
Total intermediate purchases	941	1369	1038	15447	32435		51230	119,726	
Imports to RUK	519	463	642	8882	10745	a _{ruk} X ₆	21250	15,775	
Imports to ROW	234	165	49	4701	4977	a _{row} X ₆	10125	8,575	
Net taxes on product and production	-65	11	84	842	3638	a _t X ₆	4511	8,142	
Compensation of employees	399	614	176	11967	40088	a _{coe} X ₆	53244	-	
Gross operating surplus	671	62	18	7666	22178	a _{ova} X ₆	30596	-	
Total primary inputs	1758	1314	970	34058	81626		119726	32,492	
Total gross inputs	2699	2683	2008	49505	114061	Xe	170957	152,219	

To prevent new "Biofuels" sector increasing output of Oil and Gas Extraction sector...

Kulisic *et al* (2007))

 or not change at all from existing output (e.g. Swenson (2006) or Low and Isserman (2009)

Alternative approaches?

BioMara

• Steinback (2004) shows how sectoral output can be used as a constraint, with final demand (e.g. exports) adjusting

$$\begin{bmatrix} (1-a_{11}) & -a_{21} & 0\\ -a_{21} & (1-a_{22}) & 0\\ -a_{31} & -a_{21} & -1 \end{bmatrix} \begin{bmatrix} X_1\\ X_2\\ F_3 \end{bmatrix} = \begin{bmatrix} \hat{F}_1 + a_{13}\hat{X}_3\\ \hat{F}_2 + a_{23}\hat{X}_3\\ (1-a_{13})\hat{X}_3 \end{bmatrix}$$

- *"many analysts believe that the assumption of excess capacity an unused resources is unrealistic when applied to the agricultural sector of many regions" (Thorbecke, 1998)*
 - SAM multipliers can be "constrained" to sectoral limits
 – which need not be current output
- Fixed price multipliers "represent the upper bound estimate"
 - true value (where one sector is supply constrained at any point) lies between zero and fixed price multiplier

2. Computable General Equilibrium modelling

- Empirical economic models, of which IO is a special case
- Set of equations describe production, consumption and trade
- Benchmark database for regional economy is a Social Accounting Matrix describing production, consumption and income flows in the target economy for the base year in question
- Can be used for comparative static analysis or dynamic
- Solve for equilibrium for a given set of prices/quantities

BioMara Why might CGE models be useful?

- No fixed coefficient production assumptions and so input substitution possible
 - Inputs used respond to relative price differentials
- Can incorporate supply constraints, for example, in labour and capital market, where demand could bid up prices and wages
 - Labour and capital factors of supply can adjustment over time in response to price differences
- Other factors of production can be consistently incorporated, e.g. suitable land.

Important because...

- Land can be modelled in a consistent way
 - e.g. homogenous land, but fixed in supply (e.g. Dixon *et al* (2007), Kretschmer *et al* (2008)) or modelled with consistent elasticity of transformation (CET) where land can be transformed to alternative uses at a cost...

BioMara

- Land use changes can be incorporated
 - "direct and indirect land use change is the most significant factor for the overall GHG balance and thus the environmental impact of biofuels"
- By-products and biofuel trade can be systematically modelled
- *"World is not as simple as demand-driven, fixed-proportions inputs output model", Low and Isserman (2009)*

Biofuels treatment in CGE modelling to date (Kretschmer and Peterson, 2010) BioMara

• "Implicit approach"

- Assume that cost reduction for technology is made and that alternative is displaced, e.g. oil inputs are displaced by 25% biofuels (Dixon et al, 2007)
- But too simplistic to assume cost developments are made?

• "Latent technologies"

- Technologies not available in the base year, but which become "active" at specific prices
- Dynamics and substitutability are imposed, but are they known with certainty for developing technologies?

"Disaggregating the SAM"

- Identify the sectors for biofuels and model these directly
- "most promising future approach... which should become more feasible as more extensive and reliable data on the growing biofuels sector become available" (K+P, 2010).

BioMara 3. Assessment of alternative approaches

IO/SAM	CGE
Fixed coefficients	Hierarchical production functions allowing substitution between inputs
No price effects	Full response price effects
Quantities adjust	Prices and quantities adjust
No supply constraints (demand driven)	Demand and supply interact

Adapted from West (1995), "Comparison of Input-Output, Input-Output Econometric and Computable General Equilibrium Impact models at the regional level", Economic Systems Research, Vol. 7, No. 2, p. 209-227

Some conclusions

BioMara

- Modelling can be vital and shed light on nature of economyenvironmental trade offs
- Models must be appropriate for purpose
- Suggests that (unconstrained) IO models have limited scope to cover the specific issues important for the regional economic (and environmental, including land use) impact of biofuels production.

Are conclusions valid for biofuels from marine algae?

	Ethanol/biodiesel	Marine algae
Factors of production	Corn/Sugar cane/Sugar beet/Oilseed rape/ Vegetable oil + other inputs (e.g. gas, water, etc)	Algae, carbon dioxide, water,
Constraint on growth	Availability of appropriate land	Suitable growing conditions (ocean or lab)
Competition for factors of production	Food stocks/other land uses	Other ocean users
% of US cropland required to produce 50% of US transport fuel needs from biodiesel (Yusuf Chisti, 2007)	Corn = 846% Soybean = 326%	Microalgae = 1.1%-2.5%
Cost of biodiesel (Yusuf Chisti, 2007)	1 litre palm oil = \$0.52	1 litre from microalgae produced in photobioreactor = \$2.80

4. Future research plans on regional modelling of biofuels

- a) Multi-sectoral IO/SAM databases for Scotland and Northern Ireland
 - Identification of possible "marine biofuels sector" under three scenarios for the form of development
 - Model scenarios through case studies at local/regional levels
- b) Identification of regional supply-chain for biofuels from algae
- c) Modelling of economic impacts in multi-sector, multi-region CGE framework, with technology disaggregated SAMs

Project runs from October 2009 to September 2012

Thank you

Regional Science Association International: British and Irish Section conference, Glasgow, Scotland, 25th August 2010

Funders

European Union

European Regional Development Fund Investing in your future

Project supported by the INTERREG IVA Programme Managed by SEUPB

Department of Communications, Energy and Natural Resources

Highlands&Islands ENTERPRISE

Coordination Centre: Scottish Association for Marine Science, Oban, Scotland

T: +44 (0)1631 559000 F: +44 (0)1631 559001 E: biomara@sams.ac.uk W: www.biomara.org