

Searching for the Green Paradox

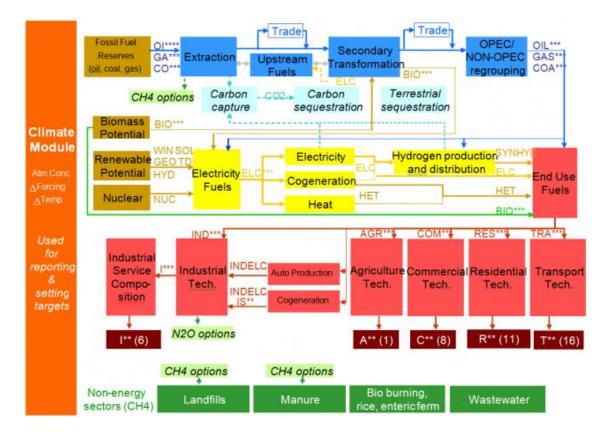
Christophe McGlade Research Associate UCL Institute for Sustainable Resources

Overview of talk

- Background to the Green Paradox
- TIAM-UCL and scenarios implemented
- Results
 - Focus on the effects of varying the introduction of climate policies
- Conclusions

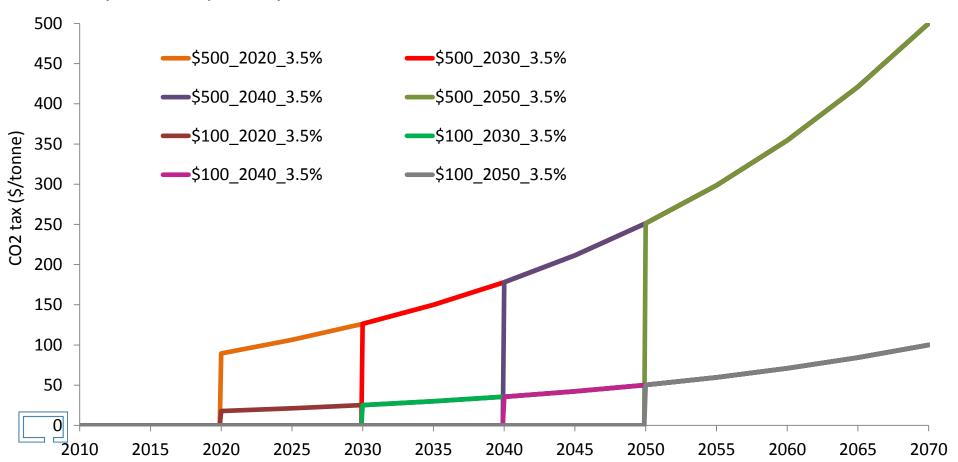
Overview of the green paradox

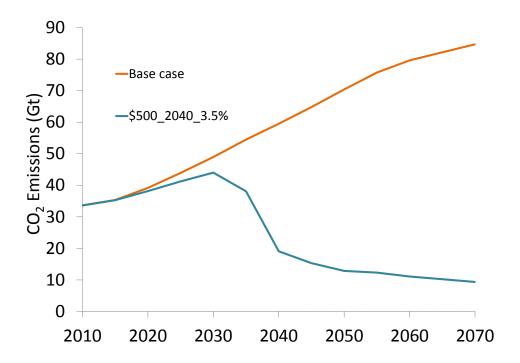
- First proposed by Sinn (2008), the green paradox suggests that some policies aimed at reducing future CO₂ emissions can perversely cause them to increase
- Based on the following logic:
 - Policy measures aimed at increasingly reducing the demand for CO₂-intensive goods and activities will reduce their value in the long term
 - These policies therefore encourage owners of fossil fuels to extract more in the near term
 - Fossil fuel prices consequently fall and consumption increases
 - Increase in fossil fuel consumption leads to an increase in CO₂ emissions in the near term
- Complimentary way of thinking about this:
 - Increasingly strict CO₂ abatement policy reduces the scarcity rent of fossil fuels
 - Optimal rate of extraction shifted forward in time
- Green Paradox is an example of intertemporal carbon leakage,
 - Additive to spatial carbon leakage
 - So any countries not implementing a CO₂ tax would doubly benefit


Green paradox literature

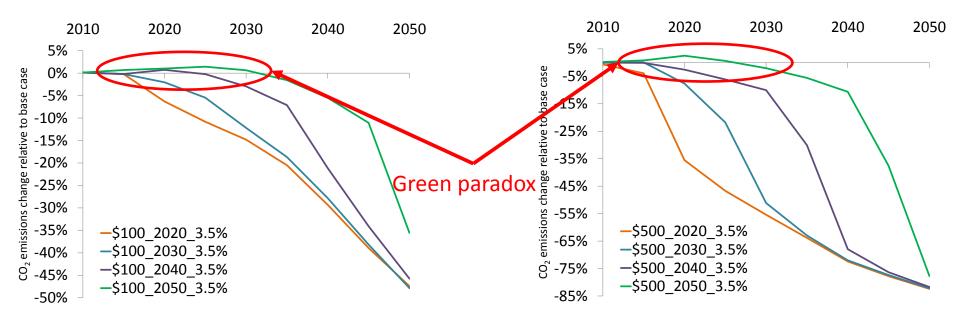
- Has been written about quite extensively e.g.:
 - Michielsen (2014), Brown backstops versus the green paradox, JEEM.68(1)
 - van der Ploeg & Withagen (2012) Is there really a green paradox? JEEM.64(3)
 - Di Maria & van der Werf (2012). Imperfect environmental policy and polluting emissions: the green paradox and beyond, Int. Rev. Environ. Resour. Econ.6 (2)
 - Gerlagh (2011) Too much oil? CESifo Econ. Stud.57(1)
 - Eichner & Pethig (2011). Carbon leakage, the green paradox and perfect future markets. Int. Econ. Rev. 52(3)
 - Edenhofer & Ottmar (2011) When do increasing carbon taxes accelerate global warming? A note on the Green Paradox Energy Policy.39(4)
 - Hoel (2010) Is there a Green Paradox? CESifo Working Paper 3168
 - Sinn (2008) Public policies against global warming: a supply side approach. Int. Tax Public Finance 15(4)
 - Sinn (2008). **Das grüne Paradoxon,** Plädoyer für eine illusionsfreie Klimapolitik. Econ-Verlag, Berlin.
- These (and many others) have discussed the situations under which the green paradox can arise, but have generally only examined it with theoretical/toy models
- We want to use a more empirical model to explore when it does and does not occur.
 For example:
 - While an increasingly strict CO₂ abatement policy may reduce the scarcity rent of fossil fuels (increasing consumption)
 - CO₂ tax also increases effective fossil fuel price (decreasing consumption)
 - Which wins will depend on the scenario under consideration

TIAM-UCL


- TIMES Integrated Assessment Model (TIAM)
- Dynamic partial equilibrium model approach with intertemporal objective function minimising global welfare costs
 - Annualised capital costs, O&M costs, fuel costs, taxes/subsidies, salvage values, demand changes
- Technologically detailed bottom-up energy system model


Varying start date of CO₂ tax

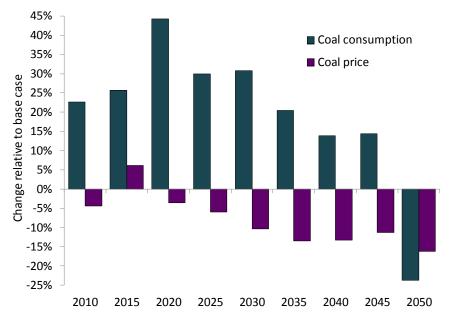
 No models looking at the green paradox to date have discussed whether energy system temporal dynamics affect likelihood of occurrence



Significant divergence between CO₂ emissions profiles

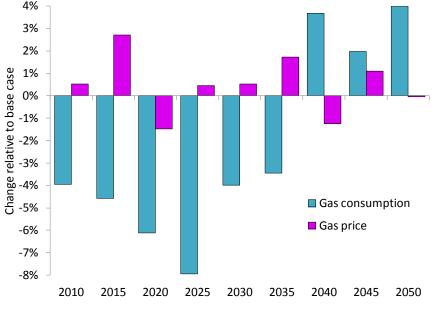
 Since we are most interested in near-term emissions rises, it is much easier to see relative changes in emissions rather than looking in absolute terms

Emissions when varying tax introduction date

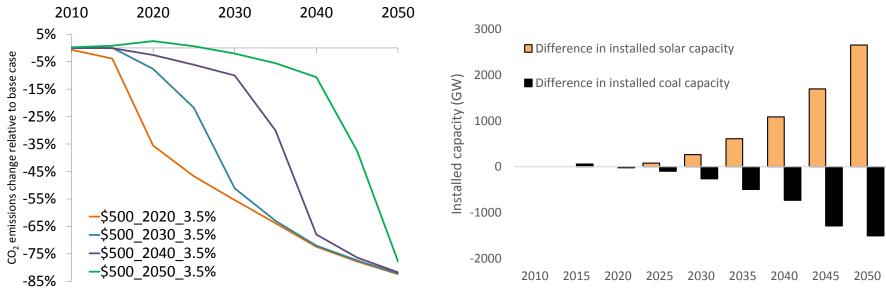

Change in CO_2 emissions between \$100 CO_2 tax scenarios and base case

Change in CO_2 emissions between \$500 CO_2 tax scenarios and base case

- Emissions can be seen to be greater in some scenarios with a CO₂ tax up to around 2030 this is the green paradox
- BUT this occurs only if there is a significant delay in implementing the CO₂ tax
- And the increase is small especially compared with later reductions resulting from the introduction
 of the CO₂ tax


Why is effect in near term so small?

Difference in UK coal consumption between the base case and \$500_2050_3.5 scenarios


Difference in UK gas consumption between the base case and \$500_2050_3.5 scenarios

 Supply-side effects: increases in coal consumption in near term are not purely additional

Why is effect in near term so small?

Change in CO_2 emissions between the base case and \$500 CO_2 tax scenarios

Differences in total installed capacity between the base case and \$500_2050_3.5 scenario

 Demand-side effects: anticipation of future tax means that investment decisions are modified long
 before the tax is actually introduced

Conclusions

- The green paradox emerged under a range of scenarios constructed using TIAM-UCL (which was found to be quite an effective tool to investigate its potential)
- Without a significant delay between the start of the model period and introduction of a rising CO₂ tax, the green paradox did not arise
- The green paradox effect was found to be small compared to the subsequent reductions in emissions because of the CO₂ tax
- As discussed in more detail in the paper, this arises because increases in coal consumption are offset by a reduction in gas consumption supply and because of demand-side anticipation of the policies to be implemented
- Paper also identifies factors to be considered when discussing the green paradox that are usually overlooked:
 - the 'volume effect', that cumulative production of each of the fossil fuels can be less than the total resource available
 - the need to consider each of the fossil fuels separately, and
 - the influence of CO_2 taxes on the production costs of the fossil fuels

Thank you christophe.mcglade.09@ucl.ac.uk www.bartlett.ucl.ac.uk/sustainable

Mathematical background

• The green paradox is based upon principles behind Hotelling rule, namely that the price of a commodity over time can be given by:

$$p(t) = c + \underbrace{\lambda(\tilde{A})e^{rt}}_{Hotelling rent}$$

with c the marginal cost of production, r the resource holder's discount rate and A the total availability of the fossil fuel

• When a rising CO₂ tax is introduced, this is modified to $\dot{p}(t) = c + (\dot{\lambda}(\tilde{A}) + \tau_0)e^{rt} + \tau_0(e^{\theta t} - e^{rt})$

with τ_0 the initial tax rate and θ the rate at which the tax rises

- If θ = r the third term is equal to zero, the temporal dynamics of the system do not change
- if θ > r then the third term increases over time and so, compared to a case with no taxation, the price rises faster over time: producers will extract more resource earlier and less later

