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Abstract

The “energy-efficiency gap” is a topic that has received much attention in the academic literature. While

the role of market and behavioural failures have been discussed at length, much less focus has been on

quantifying the magnitude of heterogeneity and persistence that exists in the realised savings from installing

measures. This paper systematically explores variation in the returns to energy efficiency upgrades. Statistical

matching and panel econometric estimations are employed on a database of over four million households

over an eight year period to mitigate selection bias into various government schemes which funded the

upgrades and to control for unobserved heterogeneity. Detailed characterisation of both cross-sectional and

temporal variation in the energy savings associated with a number of widely used energy efficiency measures

is presented. This allows an assessment of the persistence of savings over longer periods of time than is

typically examined, and an examination of the distributional impacts. The econometric estimates are then

combined with cost-estimates and a range of future energy-price scenarios to determine the cost-effectiveness

of measures. The results raise concern over the distributional effects of energy efficiency measures and

policies. Not only do households in more deprived areas experience lower energy savings, the savings erode

more quickly over time for these households. This result has important implications for improving our
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understanding of the investment incentives households face and also for improving our evaluations of energy

efficiency policies. It also suggests that the energy-efficiency gap requires less explanation than some would

suggest.
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1 Introduction

The European Union’s 2020 strategy, which constitutes a set of binding legislation, aims to cut greenhouse gas

(GHG) emissions by 20% by 2020 compared to 1990 levels. Reducing energy demand plays a crucial role in

reaching this goal. With the 2008 Climate Change Act, the United Kingdom (UK) committed to the ambitious

target of an 80% reduction in GHG emissions by 2050 relative to 1990 levels. The UK’s domestic sector is

responsible for around 25% of GHG emissions and accounts for around 30% of total final energy consumption,

mainly from gas and electricity consumption1.

A key element in reducing domestic energy consumption, is encouraging consumers to install energy effi-

ciency measures, through either policy or market-based instruments. The reluctance of some consumers to make

energy saving investments that offer them seemingly positive net-present value (NPV) returns has been widely

studied2. A recent paper by Gerarden et al. (2015) characterises this problem into three district components:

market-failures, behavioural explanations and model and measurement errors. The authors argue that the en-

ergy efficiency gap may not be as large as expected and that unobserved costs, overstated savings from adoption,

consumer heterogeneity, inappropriate discount rates and uncertainty may all contribute to the low adoption

rate not being as “paradoxical as it first appears.”. Model and measurement error is also a factor that affects

policy evaluations, many of which rely on ex-ante engineering estimates of savings, or do not take behavioural

responses into account.

Recent research has highlighted the difference between engineering estimates of energy savings and actual

realised savings, finding that engineering estimates can overstate the actual savings by as much as 2.5 times

(Fowlie et al., 2015). Even in ex-ante analyses which use observed rather than modelled data, specific factors

related to usage patterns in any particular period may bias results both before and after, while poor installation

quality or degradation in the installed equipment may affect the results post-installation. Variation over time

could affect the accuracy of measurement, the attractiveness of the investment, or the cost-effectiveness of a

government scheme. Further, variations in energy prices both before and after the installation may affect both

expectations and realisations of the investment’s net-present value.

Time-scale has proven an important factor when examining the impact of building energy codes on energy

consumption (Kotchen, 2017). However, most evaluations of energy efficiency improvements take a short time-

148% and 41% respectively (Parag and Darby, 2009)
2For example see Hausman (1979); Blumstein et al. (1980); Jaffe and Stavins (1994); Golove and Eto (1996); Allcott and

Greenstone (2012).
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scale, usually a window of 1-2 years on either side of the intervention (Adan and Fuerst, 2015; Fowlie et al.,

2015; Hamilton et al., 2016).

This research contributes by providing information on the extent of heterogeneity that exists with regard

to the savings associated with installing different energy efficiency measures. Uniquely, we also demonstrate

how the savings from measures change over time for different household types. Not only do households in more

deprived areas experience lower energy savings, the savings erode more quickly over time - in some cases the

savings reduce by 50 percent within six years. This result has important implications for improving our under-

standing of the investment incentives households face and also for improving our evaluations of energy efficiency

policies.

In order to conduct this analysis we exploit an extremely large database of home energy efficiency upgrades

and metered energy consumption3, covering over four million households and a period of eight years. By com-

bining statistical matching and a range of panel econometric estimators we control for unobserved heterogeneity

and selection into various government schemes which funded the upgrades. Our database covers the universe of

households entering into energy efficiency schemes administered by energy suppliers in the UK, thus reducing

the potential for “site-selection bias” as identified by Allcott (2015).

The data allows us to examine the variation in performance depending on when measures were installed; how

they perform over time; how this varies by dwelling and socioeconomic characteristics; and ultimately how this

affects the cost-effectiveness of measures for different household types. Results indicate significant cross-sectional

and temporal variation in energy savings; that the persistence of savings varies by the type of measure installed

and the socioeconomic characteristics of the household. The measures are generally still NPV positive under a

range of price scenarios, but the returns are much lower than expected. This research also raises concerns over

distributional factors given how the costs of policies are subsequently levied on households.

The rest of the paper is organised as follows; Section 2 provides the context in which this analysis takes place;

Section 3 the data; Section 4 describes the methodological approach employed and considerations undertaken;

Section 5 outlines the results; Section 6 provides a concluding discussion.

3The National Energy Efficiency Framework Database (NEED). Further details available at:
https://www.gov.uk/government/collections/national-energy-efficiency-data-need-framework
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2 Background

The Supplier Obligation (SO), first introduced to the UK in 1994, has become the principle policy instrument for

implementing energy efficiency improvements in the domestic sector in the UK (Rosenow, 2012). The Supplier

Obligations are an example of a “Tradable White-Certificate” (TWC) scheme. These are regulatory mecha-

nisms, employing a market-based approach to deliver energy savings. Theoretically they can be considered a

hybrid subsidy-tax instrument, in which suppliers provide subsidies for energy efficiency upgrades that are then

recovered through increased energy prices (Giraudet et al., 2012), having parallels with traditional demand-side

management (DSM) programmes in that companies are required to invest in projects that ultimately reduce

demand for their product (Sorrell et al., 2009).

As outlined in Bertoldi and Rezessy (2008) and Giraudet et al. (2012), SOs have three main features: an

obligation is placed on energy companies to achieve a quantified target of energy savings, savings are based on

standardised ex-ante calculations, the obligations can be traded with other obligated parties. This flexibility

ideally allows suppliers to choose the most cost-effective way to reach their target. Suppliers bear the cost of

installations in the first instance, costs are then passed through to their entire population of customers through

increases in energy prices (Chawla et al., 2013). Clearly, this may have distributional consequences if certain

segments of the population are less likely to avail of the schemes - to alleviate this concern, targets were imposed

regarding the proportion of savings to be achieved from lower income groups.

The Department of Energy and Climate Change (DECC) [now Department for Business, Energy and Indus-

trial Strategy (BEIS)], sets the savings targets which are then enforced by the energy regulator, the Office of Gas

and Electricity Markets (Ofgem). Ofgem sets and administers individual savings targets for each energy supplier.

Energy suppliers have various options to achieve their targets such as contracting installers, subsidising energy

efficiency products, cooperating with local authorities, delivery agents or supermarkets, or directly working with

their customers (Rosenow, 2012).

2002 2005 2008 2009 2012

EEC1 EEC2 CERT

CESP

NEED data

Figure 1: UK Energy Efficiency Programmes 2005-2012

5



Figure 1 gives an overview of SOs from 2002-2012. The first Energy Efficiency Commitment (EEC1) ran from

2002 to 2005, followed by EEC2 in 2005. In 2008, EEC2 was replaced by the Carbon Emissions Reduction Target

(CERT) which ran until 2012. In 2009, the Community Energy Saving Programme (CESP) was introduced in

parallel with CERT. While the main architecture of SOs did not change, the savings targets and the costs of the

delivering the programmes increased over time. Rosenow (2012) provides a comprehensive overview of the main

changes in each scheme from 1994 - 2012 with regards to the target, the costs, social equity implications and

other changes in design. The main change concerned the target size, increasing substantially in lifetime savings

from 2.7 to 494 terawatt hours (TWh) between 1994 and 2012 4 (Rosenow, 2012).

From 2002, all programmes included a target for disadvantaged households and fuel poverty increasingly came

to the fore. Eventually, CESP only allowed projects to be carried out in specific low income areas of Britain,

the lowest 10- 15% of areas ranked in Income Domain of the Indices of Multiple Deprivation (Hough and Page,

2015). Thus, CESP was only available in certain geographical regions. Furthermore, CESP introduced a new

bonus structure that incentivised the installation of multiple measures in a single dwelling and the treatment

of as many dwellings as possible in the same area (Duffy, 2013). Table 1 summarises the main changes for the

schemes under consideration.

Table 1: Overview of Supplier Obligations

ECC1 ECC2 CERT CESP

Target 62 TWh 130 TWh 494 TWh (293 million t

CO2)

19.25 Mt CO2

Annual costs (millions) 167 400 1,158 unknown

% savings in priority

group

50% 50% 40% lowest 10-15% of

areas ranked by

IMD

Number of cavity wall

insulations

791,524 1,760,828 2,568,870 3,000

# Number of loft insu-

lations

754,741 1,780,302 3,897,324 23,503

# Number of replace-

ment heating systems

366,488 2,018,812 31,986 42,898

Source: Lees (2006, 2008); Rosenow (2012); Duffy (2013)

41 TWh is equal to 1e9 kWh
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A key feature of all previous evaluations of the above policies is that the energy savings achieved were based

on model ex-ante estimates and not actual ex-post data. As stated above model estimates tend to overstate

actual savings significantly. This would lead to concern over the accuracy of measurement regarding both the

energy savings achieved and the cost-effectiveness of various policies in delivering savings.

3 Data

The National Energy Efficiency Database (NEED) contains dwelling-level data on four million households,

over an eight-year period. Information comes from a range of sources including meter point electricity and

gas consumption data, Valuation Office Agency (VOA) property attribute data, the Homes Energy Efficiency

Database (HEED) containing data on energy efficiency measures installed, and data modelled by Experian on

household characteristics. Details are in Table 2.

Table 2: Data sources combined in NEED

Type of variable Source

Energy efficiency measures HEED/Ofgem/DECC

Energy consumption Energy Supplier

Property attributes VOA

Household characteristics Experian

3.1 Measures installed

The database includes measures installed through EEC2, CERT and CESP. Unfortunately, it does not contain

information on direct subsidy schemes in the UK, such as the Warm Front scheme. However, Supplier Obligations

were by far the most prevalent mechanism for delivering energy savings in residential dwellings in the UK over

this period. Measures included are cavity-wall insulation, loft insulation and boiler replacements. In total over

two million measures were installed over the period of our analysis, this is graphically represented in Figure 2.
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Figure 2: Energy efficiency measures installed, 2005-2012

The NEED database does not include an exhaustive list of measures installed as part of the various schemes,

appliances and lighting also featured but are not included. However, as Table 3 demonstrates, insulation and

heating comprised the vast majority of estimated energy savings across various schemes over this period.

Table 3: Energy savings by scheme and measure

EEC1 EEC2 CERT

2002-2005 2005-2008 2008-2012

Insulation 56% 75% 66.20%

Heating 9% 8% 8.20%

Lighting 24% 12% 17.30%

Appliances 11% 5% 5.90%

Other - - 2.40%

Source: Lees (2006, 2008); Ofgem (2013)

All insulation installations in our dataset were funded through government schemes. In the early part of our

sample (pre-2007) boiler installations were also likely to have been funded through government schemes, however

government support for replacement boilers was withdrawn during EEC2, as a combination of previous support

schemes and new building regulations in 2005 had already delivered a significant penetration of new condensing
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boilers. Therefore the boiler data we report on is a combination of publicly and privately funded investments.

3.2 Energy consumption

Figure 3 illustrates that on average, gas consumption reduced by 27% between 2005 and 2012 and electricity

consumption reduced by 14%. Both of these trends are encouraging signs that the various polices in place over

this period were having an effect.
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Figure 3: Average domestic energy consumption UK, 2005-2012

3.3 Socioeconomic characteristics

The NEED dataset comprises information on household characteristics modelled by Experian and matched with

indicators based on the geographic location of the property (DECC, 2016). For reasons of data protection, the

dataset was anonymised and household-level information on variables such as income and tenure-type are not

available. However, the dataset does include two composite indicators of the socio-economic background of the

households.

1. Index of multiple deprivation (IMD)

NEED contains two variables describing IMDs: IMD 2010 for England and IMD 2011 for Wales. Both

indicators classify Lower Layer Super Output Areas (LSOAs) according to a quintile ranking that is based

on eight different domains that are incorporated using a weighting scheme. The first quintile (IMD=1)
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indicates the most deprived areas. Table 4 shows the composition of domains that are incorporated in the

indicators and their weight in percent (Payne and Abel, 2012; of National Statistics, 2011).

Table 4: Composition of IMD in %

England 2010 Wales 2011

Income 22.5 23.5

Employment 22.5 23.5

Health 13.5 14

Education 13.5 14

Access/barriers to services 9.3 10

Living environment/ housing 9.3 5

Physical environment 0 5

Crime [Wales: Community Safety] 9.3 5

2. Fuel poverty indicator (FP)

Combining data from the English Housing Survey and Census data, the fuel poverty indicator indicates

if households are fuel poor based on the households’ income and energy requirements, as well as on fuel

prices (BEIS, 2013).

4 Econometric approach

4.1 The model

We are interested in assessing the extent to which energy efficiency upgrades affect energy consumption. Energy

consumption is determined by a range of factors such as temperature, characteristics of the dwelling and its

inhabitants, and energy prices. The following baseline specification is estimated:

ln(yit) = αi + γt + ρrt + δ

3∑
j=1

Dijt + εit (1)

Where yit denotes energy consumption by household i in year t, αi is a household fixed-effect, γt is a year

fixed-effect which controls for unobserved factors which vary at an annual level such as broader macroeconomic

conditions and weather patterns, ρrt is a year-by-region fixed effect to control for factors which vary at a sub-

national level, such as more localised economic shocks and weather patterns, Dit is the treatment dummy. The

key parameter of interest is δ the average treatment effect on the treated (ATT).
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The model is estimated as a first-differenced fixed effects panel specification controlling for unobserved time-

invariant household characteristics which might affect energy consumption. Year fixed effects control for annual

trends which may affect all households at different points in time, such as economic shocks or extreme weather,

year by region fixed effects control for annual trends that might vary at a more dissagregate level, localised

economic shocks or weather patterns will be absorbed by this parameter.

In the course of the analysis, a variety of extensions to the above are estimated, to account for interactions

between different upgrades and to examine the performance of upgrades over time. The following specification

captures interactions between different upgrades:

ln(yit) = αi + γt + ρrt + +λt +Witβ + δ1

3∑
j=1

Dijt + δ2

3∑
j=1

Dijt.

3∑
j=1

Dijt + εit (2)

Following this we examine the effect of upgrades over time. Year one is used as a control period and the

ATT for all subsequent periods is estimated. The below specification is estimated:

ln(yit) = αi +

7∑
t=2

γt + ρrt + λt +Witβ + δ1

3∑
j=1

Dijt + δ2

3∑
j=1

Dijt.

7∑
t=2

γt + εit (3)

All models are estimated for both gas and electricity consumption. Standard errors are clustered at the

household level in all specifications. The data allow us to create multiple treatment and control groups. Treat-

ment groups are created for the entire sample period and for each individual year of upgrade. This allows us to

examine how treatment effects vary over time.

4.2 Identification

4.2.1 The problem of unobserved heterogeneity

The fixed effects estimators described above are based on the assumption of conditional mean independence or

unconfoundedness, selection on observables or ignorability (Caliendo and Kopeinig, 2005; Angrist and Pischke,

2009; Wooldridge, 2010), which requires that both of the following equations hold:

E[Y 0
it |Ai, t,Xit, Dit] = E[Y 0

it |Ai, t,Xit] (4)

and
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E[Y 1
it |Ai, t,Xit, Dit] = E[Y 1

it |Ai, t,Xit] (5)

Thus, it assumes that Dit is strictly exogenous and as good as randomly assigned conditional on Ai (Angrist

and Pischke, 2009). Furthermore, both fixed effects, the time effects γ and household effects α are assumed to

be additive and homogenous (Ferraro and Miranda, 2017):

E[Y 1
it |Ai, t,Xit] = E[Y 0

it |Ai, t,Xit] + δ (6)

As we are primarily interested in the effect on the households who availed of the schemes - the average

treatment effect on the treated (ATT), and not necessarily the effect on the whole population - the average

treatment effect (ATE), the condition of unconfoundedness can be relaxed and equation (5) can be ignored.

There is strong evidence that the presence of unobserved heterogeneity leads to inaccurate estimates of the

ATE and ATT in a fixed-effects OLS setting (Ferraro and Miranda, 2017; Gibbons et al., 2014). Self-selection

bias occurs as households voluntarily decide to apply upgrades in their homes or take part in government funded

schemes, potentially causing the treatment and control group to differ systematically in aspects that both affect

their likelihood of taking part in energy efficiency programs, and their energy consumption, causing the fail-

ure of the conditional mean independence assumption (Wooldridge, 2010). Unobserved heterogeneity between

households means that households respond differently to common shocks. For instance, increasing energy prices

might lead to different behaviour of low and high income households. Second, the crucial assumption of a linear

model with additive and homogeneous effects implies that the fixed effect estimates give a weighted average

based on the frequency of groups as well as the sample variances within groups (Gibbons et al., 2014). This is

problematic as the fixed effects estimator overweights groups that have larger variance of treatment conditional

upon other covariates and underweights groups with smaller conditional variance if heterogenous treatment is

prevalent (Ferraro and Miranda, 2017). One strategy to overcome this threat and to obtain consistent and

unbiased estimators is to pre-process the data through statistical matching (Wooldridge, 2010). The following

section outlines this approach.

4.3 Matching

Policy evaluations of secondary data typically employ statistical matching, along with differences-in-differences

estimation, or exploit the longitudinal nature of the data with a panel fixed-effects specification. However, both
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of these measures may suffer from bias through either unobserved temporal effects or unobserved heterogeneity.

Recent research has shown that by combining these methodologies, the accuracy of evaluations can approach

that achieved by a randomised-controlled trial (RCT) (Ferraro and Miranda, 2017).

Coarsened-exact matching (CEM) is a non-parametric statistical procedure which improves the estimation

of causal effects by reducing imbalance in observed variables between treatment and control groups (Iacus et al.,

2008; Blackwell et al., 2009). In this case we are concerned with balancing the group that received the energy

efficiency upgrades with the group that did not. By balancing all observed variables we can isolate the effect of

the upgrade on energy consumption. Alberini and Towe (2015) use a similar approach in an analysis of analysis

of home energy audits in the state of Maryland.

4.3.1 Justification for choice of matching covariates

Covariates on which the matching is performed should be predictors of household energy consumption and si-

multaneously impact the uptake of energy efficiency upgrades. The IMD of the area in which the household

resides, provides important information on the household’s socioeconomic environment, an important predictor

of energy consumption and energy efficiency uptakes. Hamilton et al. (2014) finds a strong relationship between

the uptake rate of energy efficiency upgrades and neighbourhood income levels.

While more specific information on household socioeconomic characteristics, such as employment status,

income and health are significant predictors of energy expenditures, they are found to have a smaller impact

than that of dwelling characteristics and household size (Longhi, 2015). The period in which the dwelling was

built has an important impact on residential energy consumption (Brounen et al., 2012; Harold et al., 2015). In

order to account for regional differences in weather patterns, we include a variable reflecting the region in which

the dwelling is located. Alberini and Towe (2015) provide evidence that matching solely based on dwelling

or household characteristics is not sufficient and can be optimised if past energy usage is also included. By

performing matching on energy consumption in prior years, we can account for unobservable household and

property characteristics that might vary over time, such as the household size, composition and appliance usage.

Taking into consideration all these factors, matching is performed on the following variables: property age,

fuel-type, energy consumption in prior years, region and the IMD of the area in which the household resides.
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4.3.2 Quality of matching

The quality of the matching process depends on the similarity in the distribution of covariates between treated

and matched control group. This is commonly assessed by comparing the standardised difference and variance

ratio of the variables in both groups, before and after matching (Caliendo and Kopeinig, 2005). The standardised

difference is the difference in sample means in the treated and control group, divided by the corresponding sample

variances. Formally:

d =
xtreatment − xcontrol√

s2treatment+s2control

2

(7)

It allows for a comparison of balance which is independent of the sample size and measurement unit (Austin,

2009). The smaller the difference, the better, and it is recommended that this ratio should not exceed 10 percent

(Austin, 2009).

The variance ratio measures the ratio of the mean variance in the treated and control group for each covariate.

Formally:

F =
s2treatment

s2control
(8)

This should be close to unity (Austin, 2009; Ferraro and Miranda, 2017). A significant divergence from this

indicates that the matching model is misspecified. Further methods of balance diagnostic include assessing the

magnitude of the difference between treatment and matched control group covariates using tests for statistical

significance. However, the use of the t-test for balance testing is criticised for several reasons under which the

most problematic is the dependence on the sample size. For instance, randomly discarding control units will

always increase the balance, falsely indicating a better balance (Imai et al., 2008).

As can be demonstrated by Figure 4 and Tables A1 and A2 our extremely large sample size allows a high level

of precision in matching. A high degree of balance is achieved on both variables used in matching and variables

not used in matching as can be seen from the standardised differences, variance ratios and the distributions of

matched electricity and gas consumption.
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Figure 4: Energy consumption before and after matching

Another important element in assessing the quality of matching is that the parallel paths assumption is not

violated. This assumption states that without treatment, the average change for the treated would have been

equal to the observed average change in the controls. Figure 5 demonstrates that this assumption holds for all

treatment and control groups.
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Figure 5: Energy consumption trend in upgrade and control group

5 Results

All reported results are estimates of the average treatment effect on the treated (ATT) and can be interpreted

as percentage energy savings. Multiple upgrade and control groups are created (see the notes below Table ?? for

example) for the entire period of analysis and for each individual year. This allows us to calculate the average

effect and to examine trends over time. Analysis is restricted to households with electricity consumption between

100 and 25,000 kWh, and gas consumption between 3000 and 50,000 kWh. Outliers are excluded to minimise

risk of inclusion of invalid consumption readings or non-domestic properties. Following this we create dummy

variables to indicate if household energy (either electricity or gas) changed by more than 50, 60 or 70 percent in

any given year. These dummy variables are then used in sensitivity analysis to control for unobserved changes

in occupancy that might cause large changes in consumption.
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5.1 The effect of energy efficiency upgrades by year of upgrade

Table 5 shows that the energy savings over time are quite consistent for each measure, regardless of when the

installation took place. Annual gas savings for cavity wall insulation range from 8-11 percent, loft insulation 2-3

percent, and replacement heating systems 8-10 percent.

Table 5: The effect of energy efficiency upgrades on energy consumption

(1) (2) (3) (4) (5) (6) (7)

Full sample 2006 upgrades 2007 upgrades 2008 upgrades 2009 upgrades 2010 upgrades 2011 upgrades

Cavity wall insulation -0.094*** -0.097*** -0.111*** -0.099*** -0.098*** -0.097*** -0.101***

(0.001) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002)

Loft insulation -0.030*** -0.026*** -0.031*** -0.028*** -0.027*** -0.039*** -0.035***

(0.001) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

Replacement boiler -0.092*** -0.080*** -0.093*** -0.087*** -0.102*** -0.109*** -0.099***

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Control variables Y Y Y Y Y Y Y

Household fixed effects Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y Y

Year*region fixed effects Y Y Y Y Y Y Y

Observations 617022 545627 564756 730447 746573 871379

Number of households 77128 68203 70595 91306 93322 108922

R squared 0.349 0.327 0.353 0.370 0.369 0.386 0.367

Notes: This table reports coefficient estimates and standard errors from eight separate regressions. The dependent variable in all regressions is the

logarithm of annual gas consumption in kilowatt hours. Column(1) ”All” denotes efficiency upgrades occurring at any time during the sample period.

Columns (2-8) relate to upgrades occurring only in the relevant year. Each individual year denotes upgrades occurring solely in that year. For each

upgrade group a matched control group is created using coarsened-exact matching. The sample includes billing records from 2005 to 2012. Standard errors

are clustered at the household level. Triple asterisks denote statistical significance at the 1% level; double asterisks at the 1% level; single asterisks at the 10% level.

5.2 Heterogeneity and persistence in returns to energy efficiency upgrades

5.2.1 By measure and IMD group

The next set of results, presented in Figure 6, show the interaction of the treatment variable with the variable

indicating the socioeconomic characteristics of the area in which the household resides. Energy savings are much

greater for those households living in more affluent areas (IMD = 5), compared to those in lower income areas

(IMD = 1). This is true for all upgrades. Combining all measures, the annual savings range from approximately

15 percent for those in the lowest IMD category to approximately 25 percent for those in the highest. This

result raises concerns over distributional issues as the costs of these policies were applied as a flat-rate tariff on

energy bills (Chawla et al., 2013). Given that this charge is already regressive, disproportionately affecting lower

income groups, to have savings concentrated in the higher income groups suggests a further loading of policy
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costs onto those least able to afford it.
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Figure 6: ATT for different IMD groups

5.2.2 By measure and over time

Figure 7 presents results of estimations in which the treatment variable is interacted with the year variable to

examine the persistence of savings over time. The reported results are for upgrades occurring between 2006 and

2007. This period is chosen as it allows a matched control group to be created using 2005 consumption level,

and the longest possible post-upgrade time series. Cavity wall and loft insulation show no clear time trend or

degradation. This is not surprising as these measures are expected to last for 30-40 years (Dowson et al., 2012).

However, for replacement heating systems the ATT shows a clear decreasing time path. This indicates that

energy savings are greatest in the years immediately following installation. Given that the estimated lifespan

for condensing gas boilers was 12 years around this time (Dowson et al., 2012), our results have implications for
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assessments of both household investment decisions and policy evaluations.
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Figure 7: Persistence of ATT over time by measure

5.2.3 Heating system replacements by IMD group over time

The reduction in savings could be due to degradation of equipment or a behavioural response from households.

Changes to building regulations in 2005 (needs ref) mandated all replacement boilers to be condensing and a

minimum of 86% efficiency. Other than this we do not have any detailed product characteristics. However, by

decomposing this trend by socioeconomic group it is possible to examine whether this effect varies for different

household types. Not only are energy savings less for those in lower income areas, the trend of decreasing savings

over time is much more pronounced for these households. The savings for those is the lowest IMD group have

halved within five years.
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Figure 8: ATT for replacement heating system. Persistence over time and by IMD
group

5.3 Cost effectiveness of measures

5.3.1 Estimated costs to suppliers and private costs of measures

In order to assess the cost-effectiveness, it is first necessary to estimate the costs. A wide degree of variation

clearly exists here, and some assumptions need to be made. However, a number of published academic and

policy papers provide cost-estimates. The estimates we present in Table H1 are simple averages of a range of

estimates, outlined in more detail in Tables E1, E2 and E3. The costs we present are the costs incurred by the

energy companies in installing each measure. These may understate the actual costs in some cases, and can

thus be considered a lower bound. For example, the cost for replacement heating system used is the assumed

additional cost of installing a high efficiency system, over and above a typical lower-efficiency system. The

20



Energy Savings Trust estimate the costs of boiler replacements to range from £700 to £6,000. On average the

installation of condensing boiler costs around £2,400 per dwelling. Frontier Economics assumes that the fixed

cost of for gas-fired condensing boilers lie between £2,200-3,000. (Need ref). For the purposes of comparison

this is considered to be an upper bound.

Table 6: Cost assumptions for each measure

Measure Cost assumptions (GBP)

Cavity wall insulation 350

Loft insulation 285

Replacement boiler lower (policy cost) 200

Replacement boiler upper (private cost) 2000

Source: Based on Lees (2005, 2008), Shorrock (2005)

5.3.2 Internal rate of return (IRR)

The internal rate of return (IRR) on a project is the discount rate (r) that yields a net-present value of zero,

or the discount rate at which the average value of avoided discounted future energy costs equals the upfront

investment cost. Formally, this can be calculated using the below formula:

NPV =

T∑
t=1

Ct

(1 + r)t
− C0 (9)

Where T is the estimated lifespan of the measure, Ct are the avoided energy costs in year t, C0 is the upfront

investment cost and r is the IRR which we solve for. The IRR is calculated based on the econometric estimates

we observe, for varying estimated lifespans of measures and assuming constant future energy prices. While these

measures were largely funded by the energy companies, it is useful to estimate the private returns as this would

be a critical factor in determining uptake in the absence of such schemes.

Table 7 presents estimated IRRs for each measure, calculating the IRR for 10, 20 and 30 years. Our preferred

estimated lifespan is 10 years for replacement heating system and 30 years for both types of insulation. Assuming

a lifespan of 30 years or more, cavity wall insulation is an attractive investment yielding a return of 16 percent.

Loft insulation is less attractive yielding 6 percent. Whether to invest in a heating system depends greatly on

whether one uses the estimated policy cost or private cost. The low and highly negative returns in some cases

suggest that there may not be much of an energy efficiency gap to explain with regard to replacement heating

systems.
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Table 7: IRR for each measure

Cavity wall Loft BoilerL (policy cost) BoilerU (private cost)

IRR 10 7% -8% 17% -24%

IRR 20 15% 4% 23% -7%

IRR 30 16% 6% 23% -2%

The next set of results, presented in Table 8 presents IRR estimates for each measure and each IMD group,

along with the sample average for comparison purposes. A considerable degree of variation exists around the

sample average, with households living in more deprived areas experiencing much lower returns than those in

more affluent areas.

Table 8: IRR for each measure and IMD group

Sample Average IMD1 IMD2 IMD3 IMD4 IMD5

Cavity wall 16% 11% 14% 16% 17% 18%

Loft 6% 5% 5% 5% 7% 9%

BoilerL 17% 12% 14% 17% 20% 22%

BoilerU -24% -26% -25% -24% -23% -22%

The final set of IRR estimates we present, adjusts the future energy savings from a heating system replacement

to correspond with the observed estimates in Figure 8. In this case, savings erode more quickly over time for

households living in more deprived areas. Taking this in account results in a further reduction in the IRR for

lower income households, particularly if the policy cost is taken into account.

Table 9: IRR for each measure and IMD group adjusting for time-path of energy
savings

IMD1 IMD2 IMD3 IMD4 IMD5

BoilerL 6% 12% 16% 20% 19%

BoilerU -29% -26% -23% -21% -22%

5.3.3 Other measures of cost-effectiveness

To broaden the perspective somewhat we also consider two other measures of cost-effectiveness: the cost per

tonne of CO2 removed and the cost per kWh of energy saved. These are calculated at the sample average and
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allow a comparison of the overall cost of these policies with other similar initiatives5. The estimated cost per

kWh of energy saved is calculated by summing up the annual estimated savings over the expected lifetime of the

measure. To calculate the cost per tonne of CO2 removed, we convert our kWh estimates based on the estimated

CO2 produced in consuming one kWh of gas and electricity as calculated by the Carbon Trust (needs ref). These

are reported in Table ??, detailed information on the underlying assumptions is presented in Table F1.

Cavity wall insulation is the most cost-effective measure, followed by loft insulation and replacement heating

systems. Relative to the estimated social cost of carbon and natural gas prices, insulation and the lower estimate

for replacement heating systems seem relatively cost effective. However, at the upper bound of replacement

heating system cost it does not represent an attractive investment.

Table 10: Cost-effectiveness of each measure

GBP per tonne of CO2 GBP per kWh

Cavity wall insulation 36 0.0072

Loft insulation 90 0.0171

BoilerL 60 0.0141

BoilerU 600 0.1412

Calculated using Carbon Trust estimates of CO2 per kWh of electricity and gas

6 Discussion

This research provides an analysis of the returns to the installation of energy efficiency measures. Statistical

matching and a range of panel econometric estimators are used to control for unobserved heterogeneity and

selection into various government schemes which funded the upgrades. The database used covers the universe

of households entering into energy efficiency schemes administered by energy suppliers in the UK.

The data allows us to examine the variation in performance depending on when measures were installed,

how they perform over time, how this varies by dwelling and socioeconomic characteristics, and ultimately how

this affects the cost-effectiveness of measures for different household types. The primary contribution of this

work is to provide a detailed breakdown of the distributional effects of installing measures, and uniquely, we can

characterise this over longer periods of time than have previously been examined.

Results indicate that cavity wall insulation and heating system replacement (installation of a condensing gas

boiler) result in an energy saving of about 10 percent of annual consumption, while loft insulation results in

5See Appendix G for comparison with other schemes
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approximately a three percent reduction. These savings are consistent regardless of when the measures were

installed.

Households living in more deprived areas observe less savings (both in absolute and percentage terms) than

those in more affluent areas. This result is true for all measures examined. In addition to this, savings from

heating system replacements erode quickly over time for the most deprived households, but remain stable for

more affluent households. As far as we are aware this result has not been shown before. Due to changes in

the UK building regulations in 2005, all boiler replacements we observe are required to be condensing boilers,

which are of 86% or higher efficiency. Therefore, this finding would not appear to be as a result of differences in

quality. It is more likely due to a behavioural response over time, or also potentially related to variations in the

frequency of servicing for different household types.

The econometric estimates are then combined with cost estimates and energy price information to examine

the cost-effectiveness of each measure for different household types. Significant variation is observed, with mea-

sures having a considerably higher rate of return for households in more affluent areas, and being negative in a

number of cases. Once the time-path of energy savings is considered for heating system replacement this further

reduces the IRR for households in more deprived areas.

These results raise some important issues and provide new information with regard to the incentives facing

households when making investments in energy efficiency, and in evaluating policies which finance efficiency

improvements. If purely financial considerations are taken into account, many of these measures do not seem

attractive for low-income households. However, research suggests that other welfare benefits relating to health

and well-being exist. Research must do more to quantify these additional benefits.

The Green Deal was a recent policy initiative in the UK which provided households with loans in order to

finance energy efficiency measures at interest rates of approximately eight percent. Given the results we observe,

it is clear that this rate is not sufficiently low to provide incentives for many households to partake in this

scheme. In particular, low income households would actually lose money by making these improvements unless

energy prices rise significantly.

At an individual household level, the private benefits of energy efficiency investments need to be re-considered

with a greater focus on the non-financial benefits. While at a societal level a greater focus on carbon emissions

reduction, as opposed to cost-savings is required.
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7 Appendix

7.1 Balance tables for matched variables

Table A1: Unmatched sample

Unmatched sample Treated Control Balance

Variable Mean Variance Skewness Mean Variance Skewness Std-diff Var-ratio

Variables used in matching prop age 2.96 1.98 0.16 3.00 3.00 0.31 -0.03 0.66

imd both 2.85 2.11 0.15 2.96 2.01 0.05 -0.08 1.05

region 5.34 7.33 0.03 5.81 6.31 -0.29 -0.18 1.16

fuel type 0.98 0.02 -7.43 0.98 0.02 -6.33 0.04 0.74

Gcons2005 18124 78900000 0.65 17394 86200000 0.73 0.08 0.92

Variables not used in matching prop type 3.33 2.63 0.22 3.56 2.92 0.08 -0.14 0.90

floor area 2.20 0.40 0.89 2.20 0.46 0.77 -0.01 0.86

loft depth 2.03 0.28 0.04 2.08 0.53 -0.13 -0.08 0.52

wall cons 0.73 0.20 -1.02 0.59 0.24 -0.36 0.29 0.82

FP ENG 2.95 1.97 0.06 2.89 2.12 0.10 0.04 0.93

Econs2005 3903 7653561.00 2.16 3998.54 8374713 2.14 -0.03 0.91

Notes: Some text

Table A2: Matched sample all years

All years matched sample Treated Control Balance

Variable Mean Variance Skewness Mean Variance Skewness Std-diff Var-ratio

Variables used in matching prop age 2.91 2.32 0.24 2.91 2.31 0.24 0.00 1.00

imd both 2.92 2.07 0.09 2.92 2.07 0.09 0.00 1.00

region 5.62 6.83 -0.15 5.62 6.82 -0.15 0.00 1.00

fuel type 0.98 0.02 -7.45 0.98 0.02 -7.47 0.00 1.01

Gcons2005 18020 84200000 0.67 18017 84300000 0.67 0.00 1.00

Variables not used in matching prop type 3.36 2.68 0.19 3.48 2.87 0.14 -0.07 0.93

floor area 2.21 0.42 0.86 2.21 0.45 0.80 0.00 0.93

loft depth 2.04 0.30 0.03 2.05 0.52 -0.08 -0.02 0.57

wall cons 0.67 0.22 -0.71 0.63 0.23 -0.52 0.09 0.95

FP ENG 2.95 2.04 0.06 2.96 2.09 0.05 -0.01 0.98

Econs2005 3945.89 7999389.00 2.15 4028.94 8182317.00 2.09 -0.03 0.98

Notes: Some text
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B Overview of Need dataset

Table B1: Description of variables in NEED

Variable Description

HH ID Household identifier. A unique value for each record. Created specifically for these datasets.

REGION Region code - formally Government Office Region. See ONS website for more details: http://www.ons.gov.uk/ons/guide-

method/geography/beginner-s-guide/administrative/england/government-office-regions/index.html.

IMD ENG English Index of multiple deprivation 2010. Households are allocated to five groups (quintiles) based on the deprivation rank of

the 2001 Lower Layer Super Output Area (LSOA) they are located in. Households in the 20 per cent most deprived LSOAs are in

the bottom quintile (1) and households in the 20 per cent least deprived LSOAs are in the top quintile (5).

IMD WALES Welsh Index of multiple deprivation 2011. Households are allocated to one of five bands based on the deprivation rank of the LSOA

(2001) they are located in. 1, most deprived, 5 least deprived.

FP ENG EUL only. Fuel Poverty Indicator for England. Households are allocated to one of five bands based on the estimate of the proportion

of households in fuel poverty in the LSOA (2001) they are located in. Uses the 2011 estimates of fuel poverty low income high cost

definition.

EPC INS DATE EUL Only. Provides information on the date of the EPC inspection (based on lodgement date).

GconsYEAR Weather corrected annual gas consumption. Based on meter point data from Xoserve and independent gas transporters. Readings

relate to October to September each year (e.g. 2012 consumption is October 2011 to September 2012). See here for more information

on this source: https://www.gov.uk/government/publications/regional-energy-data-guidance-note.

GconsYEARValid Flag indicates records with valid consumption and households off the gas network.

EconsYEAR Annual electricity consumption in kWh - values relate to end January to end January each year (e.g. 2012

consumption is end January 2012 to end January 2013). See here for more information on this source:

https://www.gov.uk/government/publications/regional-energy-data-guidance-note.

EconsYEARValid Valid electricity consumption (between 100 and 25,000 inclusive)

E7Flag2012 Shows whether the electricity meter is an E7 (profile 2) meter - this does not necessarily mean the household has an E7 tariff, some

households will have an E7 meter without an E7 tariff.

MAIN HEAT FUEL Main fuel used to heat the property, based on information from Energy Performance Certificate

PROP AGE Banded year of construction based on EPC data.

PROP TYPE Type of property (based on combination of EPC built form and property type).

FLOOR AREA BAND Banded floor area based on EPC (m2).

EE BAND Energy Effeciency Band Based on EPC (A and B grouped).

LOFT DEPTH Amount of loft insulation as assessed by EPC (all properties with loft insulation recorded as installed through a Government scheme

are assigned 2 irrespective of EPC information). No information could occur where the information is missing from the EPC or

where the property does not have a loft.

WALL CONS Wall construction as recorded on EPC.

CWI Cavity wall insulation installed through Government schemes. This includes measures recorded as installed on HEED, including,

Energy Efficiency Commitment, Community Energy Savings Programme and Carbon Emissions Reduction Target.

CWI YEAR Year of CWI installation

LI Loft insulation installed through Government schemes. This includes measures recorded as installed on HEED, including, Energy

Efficiency Commitment, Community Energy Savings Programme and Carbon Emissions Reduction Target.

LI YEAR Year of LI installation

BOILER This includes boilers installed through Government schemes, and those registered by CORGI (up to 2009) and Gas Safe (2009

onwards).

BOILER YEAR Year of Boiler installation

WEIGHT EUL Only. Weighting based on Region, property age, property type and floor area band. Summing all weights gives (approximate)

total number of households in England and Wales 2011.

Notes: Some text
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Table B2: Summary statistic

Variable Category n untreated n treated Total n Mean Gas Mean Electr.

Regions North East 83,698 115,415 199,113 15510.84 3462.747

North West 236,794 266,874 503,668 15208.41 3900.542

Yorkshire (a.t.H.) 188,290 201,006 389,296 15493.32 3813.363

East Midlands 174,550 179,017 353,567 15177.16 4003.458

West Midlands 199,366 185,984 385,350 15007.05 4146.137

East of England 246,651 184,685 431,336 15068.45 4371.629

London 389,548 185,003 574,551 15372.6 4135.165

South East 363,751 270,953 634,704 15507.96 4382.642

South West 229,357 176,074 405,431 13845.36 4457.526

Wales 105,071 104,361 209,432 14676.42 3789.692

FP 1 515,635 359,281 874,916 13103.34 3998.862

2 409,940 374,097 784,037 15036.81 4164.775

3 396,893 363,103 759,996 15661.29 4219.243

4 375,062 336,290 711,352 16214.88 4197.805

5 414,474 332,241 746,715 16104.2 4078.469

IMD 1 450,616 455,048 905,664 12817.86 3603.685

2 469,230 377,913 847,143 14104.08 3890.909

3 466,882 353,377 820,259 15181.31 4246.657

4 431,621 338,563 770,184 16325 4429.783

5 398,727 344,471 743,198 17867.73 4495.282

Age before 1930 606,589 391,713 998,302 16716.21 4303.14

1930-1949 251,402 314,856 566,258 16863.97 4047.436

1950-1966 290,718 431,623 722,341 14515.74 3873.33

1967-1982 369,192 436,771 805,963 13831.01 3931.536

1983-1995 299,008 201,981 500,989 13410.3 4250.797

1996 onwards 400,167 92,428 492,595 13966.06 4287.513

Type Detached 295,374 251,537 546,911 21843.34 5448.197

Semi-detached 408,987 514,204 923,191 16433.14 4138.248

End-Terrace 191,830 186,240 378,070 14938.36 3952.917

Mid-Terrace 450,951 385,582 836,533 13771.39 3729.568

Bungalow 138,088 238,298 376,386 15926.08 3978.159

Flat 731,846 293,511 1,025,357 9899.633 3788.039

Floor 1 to 50 m2 361,530 167,965 529,495 8516.688 3344.52

51-100 m2 1,334,455 1,259,914 2,594,369 13586.52 3790.722

101-150 m2 366,210 335,292 701,502 19912.04 4829.909

Over 151 m2 154,881 106,201 261,082 27939.23 6902.986
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C Results from alternative specifications

Table C1: Summary statistic

The effect of energy efficiency upgrades on energy consumption

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Full sample Only gas Matched sample Only gas and matched Only gas, matched and elec 50 drop 60 drop 70 drop 70 drop, elec

Cavity wall insulation -0.092*** -0.092*** -0.083*** -0.084*** -0.083*** -0.095*** -0.096*** -0.094*** -0.092***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Loft insulation -0.025*** -0.026*** -0.018*** -0.019*** -0.020*** -0.029*** -0.030*** -0.030*** -0.029***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Replacement boiler -0.055*** -0.062*** -0.038*** -0.045*** -0.049*** -0.090*** -0.092*** -0.092*** -0.091***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

0.179*** 0.138***

(0.000) (0.001)

Control variables Y Y Y Y Y Y Y Y Y

Household fixed effects Y Y Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y Y Y Y

Year*region fixed effects Y Y Y Y Y Y Y Y Y

Observations

Number of households

R squared 0.115 0.118 0.115 0.167 0.118 0.398 0.375 0.349 0.369

Notes: This table reports coefficient estimates and standard errors from eight separate regressions. The dependent variable in all regressions is the logarithm of annual gas consumption in kilowatt hours. For each

upgrade group a matched control group is created using coarsened-exact matching. The sample includes billing records from 2005 to 2012. Standard errors are clustered at the household level. Triple asterisks denote

statistical significance at the 1% level; Double asterisks at the 1% level; single asterisks at the 10% level.
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D Results in kWh

Table D1: Results in units of energy saved (kWh)

(1) (2) (3)

Gas Elec Tot Energy

Cavity wall insulation -1254.909*** -23.002 -1277.911***

(41.989) -14.009 (46.216)

Loft insulation -375.539*** -8.901 -384.440***

(36.250) -11.268 (39.533)

Replacement boiler -1229.965*** -98.273*** -1328.238***

(32.918) -10.796 (35.722)

Control variables Y Y Y

Household fixed effects Y Y Y

Year fixed effects Y Y Y

Year*region fixed effects Y Y Y

Observations 549072 549072 549072

Number of households 68,634 68634 68634

R squared 0.337 0.092 0.357

Notes: This table reports coefficient estimates and standard errors from eight separate regressions. The dependent variable in all regressions is the logarithm of

annual gas consumption in kilowatt hours. Column(1) ”All” denotes efficiency upgrades occuring at any time during the sample period. Columns (2-8) relate to

upgrades occuring only in the relevant year. Each individual year denotes upgrades occuring solely in that year. For each upgrade group a matched control group

is created using coarsened-exact matching. The sample includes billing records from 2005 to 2012. Standard errors are clustered at the household level. Triple

asterisks denote statistical significance at the 1% level; Double asterisks at the 1% level; single asterisks at the 10% level.
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E Cost assumptions

Table E1: Sources of cost assumptions

Low () High ()

Cavity wall (pre 1976) 300 325

Cavity wall (post 1976) 300 325

Loft 300mm (currently none) 138 273

Loft 300mm (currently 100mm) 86 211

Loft 300mm (currently 200mm) 35 170

Condensing boiler 100 300

Notes: Source Shorrock (2005).

Table E2: Sources of cost assumptions

EESOP1 (1994) EESOP2 EESOP3 EEC1 (2005)

Cavity wall insulation 223 219 261 261

Condensing boiler 450 270 165 114

Notes: Source Lees (2005).

Table E3: Sources of cost assumptions

Defra EEC1 Defra EEC2 Defra CERT Lees 2005 Lees 2008

Cavity wall insulation 268 313 380 274 350

Loft insulation (top up) 213 260 286 217 275

Loft insulation (virgin) 213 260 286 252 295

A and B boiler 145 120

A and B boiler and heating control 217 190

All boilers 50 45

Notes: Source Lees (2005, 2008).
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F Carbon saving assumptions

Table F1: Assumptions for CO2 saving calculation

(1) Cavity wall insulation (2) Loft insulation (3) Replacement heating system

Gas Elec Gas Elec Gas Elec

kg CO2 per (kWh) 0.18 0.52 0.18 0.52 0.18 0.52

Total annual saving (kWh) 1551.46 67.51 546.22 10.74 1363.85 52.29

Total annual saving (kgCO2) 284.85 35.42 100.29 5.63 250.40 27.43

Lifespan 30 30 30 30 12 12

Total lifetime savings (kgCO2) 8545.41 1062.54 3008.56 168.99 3004.82 329.16

Notes: Some text
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G Comparison of cost-effectiveness

Table H1: Cost assumptions for each measure

Intervention type Reference Evaluation type Relevant subset Percent

reduction in

energy

usage

Engineering

estimates of

percent reduc-

tion

in energy usage

Cost effectiveness

(cents per kWh

saved, 2015 USD)

Behavioral programs Allcott (2011) RCT NA 2 3.6

Allcott & Rogers (2014) RCT One-shot intervention 4.4

Two-year intervention 1.1 to 1.8

Four-year intervention 1.2 to 1.8

Ayres et al. (2012) RCT Sacramento, California 2 5.5

Puget Sound, Washington 1.2 2

Building codes Novan et al. (2017)c RD analysis NA 1.3 20 24.4

Efficient equipment or energy savings subsidy Alberini & Towe (2015) Matching NA 5.3 3.9

Alberini et al. (2016) DID Rebate of $1,000 or more 0

Rebate of $450 5.5 47.9

Rebate of $300 6.2 28.2

Burlig et al. (2017) Machine learning NA 2.9 to 4.5 11.6 to 18

Davis et al. (2014) DID regression Refrigerators 8 27.2

Air conditioners plus 1.7 4.5

Information provision Alberini & Towe (2015) Matching 5.5

Supplier Obligation (TWC) McCoy & Kotsch (2018) Matching, FE regression Cavity wall insulation 9.4 20.0 1.54 to 2.31

Loft insulation 3 5.2 3.65 to 5.47

Replacement heating system 9.2 24.9 3.02 to 30.19

Previous estimate of UK Supplier obligation Lees, 2008) 1.92

Adapted from Gillingham et al (2018)
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