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Abstract

This paper explores how price linkages between carbon allowances and market fundamentals

in the EU Emissions Trading Scheme (EU ETS) vary over time. I adopt a multivariate GARCH

model that allows the conditional correlation between carbon, energy and financial prices to change

smoothly across regimes governed by functions of two transition variables that explain why price

linkages vary. I use (i) time as transition variable to allow for structural changes associated with

institutional advances in the EU ETS and (ii) implied volatility to account for heterogeneity in the

behavior of correlations in times of distress compared to calm periods. The results point to a new

pricing regime with much closer carbon-energy price linkages in the second phase of the EU ETS.

Furthermore, I find that correlations depend on market uncertainty conditions, which exposes the

link between carbon and financial markets due to common macroeconomic shocks during the current

financial crisis.
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1 Introduction

Putting a price on carbon dioxide (CO2) emissions is a fundamental lesson from environmental economics

and the theory of externalities. The introduction of the European Union Emissions Trading System (EU

ETS) has established by now the world largest emissions allowance market (henceforth carbon market) in

which the tradable EU Allowances (EUAs) reflect the EU-wide carbon price. Much recent effort has been

made to explore the carbon pricing mechanism. Theory predicts that the allowance price should reflect

market fundamentals related to the marginal costs of emissions abatement (Rubin, 1996). Energy prices

(e.g. coal prices) and economic indicators (e.g. stock prices) are widely accepted fundamentals correlated
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with the observed EUA market prices (Hintermann, 2010). However, regulatory events and the financial

crisis have substantially changed the EU ETS during its seven years (2005-2011) of operation. Although

central to understanding price formation in the EU ETS, the consequences of these structural changes

on price linkages remain widely unexplored.

In this paper I investigate how price linkages between EU allowances and market fundamentals vary

over time both within and between trading phases of the EU ETS. I set up a data-coherent model of

the correlation process between EUAs and a set of accepted fundamentals (oil, gas, coal, electricity,

stocks and bonds), allowing for the correlations to vary across regimes directly as a function of transition

variables, thereby explaining why price linkages vary. Two variables, a time trend and implied stock

market volatility, combine to capture variations of correlations associated with (i) institutional changes

in the maturing EU ETS and (ii) risk perception in financial markets. My approach is designed to

accommodate, for the first time, the presence of structural breaks in price linkages triggered by policy

events and the different behavior of price correlations in times of distress compared to calm periods.

Previous research has focused on ascertaining whether carbon prices are based on marginal abatement

cost determinants. This approach is well represented by Hintermann (2010) who derives a structural

model that explains EUA price changes as a function of, inter alia, energy prices, stock market indices

and weather. However, the detection of fundamental price drivers is only one side of the story. My work

is motivated by empirical studies in financial economics that suggest price formation across markets

evolves over time (Bollerslev et al., 1988) and can be materially influenced by institutional changes

(Capiello et al., 2006) or time-varying market uncertainty (Longin and Solnik, 1995, 2001). None of

the existing studies on the EU ETS is based on an econometric model that accounts for such dynamics

in price linkages. The way they incorporate institutional and macro-financial changes of the EU ETS

environment (sample-splitting and/or dummy variables) is mostly ad-hoc (see also Bredin and Muckley,

2011; Alberola et al., 2008). Instead, my approach seeks to formulate a coherent model of the data-

generating process that includes the possibility of structural change in the dependence structure between

EUAs and its fundamentals. Extending econometric approaches used in the EU ETS literature, I apply a

multivariate GARCH framework and model dynamic conditional correlations to trace temporal patterns

in price linkages and their economic sources.

I attempt to examine two distinct, but related, empirical questions. The first question centers on struc-

tural breaks and asks whether a new correlation regime with an increased dependency between EUAs and

fundamentals emerges in the EU ETS over time. I argue that advances in the market design and maturity

of the relatively young EU ETS spur structural breaks in the Phase I-to-Phase II period with upward

trends in carbon-energy correlations. First, various institutional rules of the EU ETS which proved

inefficient in Phase I considerably changed, e.g. the ban on intertemporal trading of EUAs (Daskalakis

et al., 2009). Second, market microstructure analyses indicate that the EU ETS has become a highly
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liquid market with the common trading patterns of mature commodity markets (Mizrach and Otsubo,

2011) which may entail enhanced informational efficiency (Chung and Hrazdil, 2010).

My second empirical question focuses on correlation asymmetries under different market uncertainty

conditions and asks whether correlations are exacerbated during episodes of financial turmoil. I suggest

that the risk perception in financial markets is important for understanding carbon-energy and carbon-

financial market correlations and ultimately the EUA price formation. In fact, the 2008-09 financial

crisis has been characterized by sharp price falls across various markets, thereby witnessing a growing

connection between carbon, energy and financial market prices. The different correlation behavior in

times of distress to calm periods should be particularly relevant to uncover carbon-financial market

linkages. Prior findings suggest that EUA prices are only remotely connected to stock and bond markets

(Chevallier, 2009). I re-examine this apparent segmentation since, in theory, common macroeconomic

shocks should connect the markets.

I adopt the Double Smooth Transition Conditional Correlation GARCH model by Silvennoinen and

Teräsvirta (2005, 2009) that allows the conditional correlation to change smoothly across up to four

regimes directly as a function of observable transition variables. I use smooth transition models because

they can capture both gradual and sudden changes in correlation patterns, impounding slowly developing

trends (i.e. due to institutional change) and rapid changes in investor expectations (i.e. due to shifts in

risk perception). Another appealing feature of these models is that they provide a framework in which

constancy of correlations and the existence of links to economic variables or general proxies for latent

factors can be tested in a straightforward fashion. I use (i) calendar time as transition variable to capture

shifts in the correlation level and (ii) the implied volatility from equity index options (VSTOXX index)

to account for expected market uncertainty conditions.

My main findings are as follows: First, correlations between carbon, on the one hand, and gas, coal and

electricity, on the other hand, are four, three and two times as high in Phase II as in Phase I, respectively.

The structural breaks are characterized by widely varying dates and speeds of change illustrating the

advantages of endogenously determining change points. The tendency towards greater market integration

evolves to some extent gradually in the course of 2007 indicating an efficient anticipation of changes in the

EU ETS. Second, carbon and financial markets are not segmented. Rather, correlations heavily depend

on market conditions and the VSTOXX index is an informative state variable concerning the risk of

common shocks often associated with extreme events. High expected market volatility shifts carbon-

stock (-bond) correlation significantly upwards (downwards) with peaks around the Lehman Brothers

failure. Third, the striking commonality between carbon-oil and carbon-stock linkages over time indicates

that the - ambiguous - positive price impact of oil is attributed to the correlation between oil prices and

overall economic activity rather than to fuel switching or oil-gas correlation.

Overall, my findings suggest that a new pricing regime with an increased dependency between EUA
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prices and energy prices has emerged in Phase II of the EU ETS. The stabilized price linkages indicate

that energy market fundamentals become more important in the EUA price formation. This would

have a positive effect on the cost-efficiency of the EU ETS, that is to achieve emissions reduction goals

at minimum costs. My findings bear practical implications for risk management of companies and

specialized traders; optimal hedging strategies have changed as a result of correlation shifts and efficient

hedging positions for asset holdings should be based on time-varying correlation estimates. The implied

volatility index may partly help on hedging the risk of adverse price movements in periods of turmoil.

2 EU Emissions Trading Scheme

The EU ETS covers almost 50% of EU’s total CO2 emissions produced by around 12,000 covered in-

stallations in the power sector and most energy-intensive industries. To date, three regulatory periods

have been put in place: The pilot Phase I covered the period 2005-2007. Phase II coincides with the

Kyoto Protocol commitment period of 2008-2012. Phase III will run from 2013-2020. An extensive

stream of literature discusses the lessons learned from the first trading years (e.g., Convery et al., 2008).

The decentralized cap-setting process, the grandfathering of allowances and the restriction of inter-phase

banking of allowances are identified as flaws of the initial regulatory setting. The latter made Phase I a

self-contained market unrelated to future caps and together the institutional weaknesses led to a general

over-allocation and spot price collapse. In contrast, Phase II experiences considerable improvements

(Egenhofer et al., 2011). First, over-allocation is avoided as the European Commission assesses national

allocation plans and, thereby, de facto imposes a EU-wide cap. Also, the use of auctioning as allocation

procedure increases. Second, banking of EUAs from Phase II into later phases is allowed. Finally, Kyoto

Protocol emission credits are introduced.

Beside the distinct regulation, Phase I and II also differ in terms of market expertise and liquidity. To

begin with, the difference is reflected in the total market volume of EUA trading; it was 2,410 million

metric tons of CO2-equivalent in Phase I, which is less than half of the volume traded (4,940 million metric

tons) in the single year 2009 (according to Point Carbon). Further, market microstructure analyses of

Benz and Hengelbrock (2008) and Bredin et al. (2011) document an increase in market liquidity for

Phase II expiring futures contracts. Also, Mizrach and Otsubo (2011) suggest that market activity in

Phase II resembles the trading patterns of other more mature instruments in a highly liquid market.

The structural change with respect to market regulation, expertise and liquidity motivates me to devise

a statistical methodology that allows for the price linkages in the EU ETS to change over time. Previous

studies (e.g. Mansanet-Bataller et al., 2007; Hintermann, 2010) make a major contribution to under-

standing carbon price formation, but none are based on a convincing model flexible enough to capture

dynamic linkage patterns with likely structural breaks, time trends and correlation asymmetries.
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3 Data

3.1 Data specification

I consider daily data for the sample period from April 22, 2005 until April 21, 2011, a total of 1,537

observations. The price data is obtained from ICE Futures Europe and Thomson Datastream and

denominated in the local currency of each market.1

Carbon data: I use settlement prices of EUA futures contracts traded on the ICE ECX to construct a

continuous price series that combines five contracts with expiration in Phase II (December 2008, 2009,

2010, 2011). During Phase I, the carbon price series is equal to the price of the December 2008 contract.

In Phase II, the series switches to the December 2009 contract, until its last trading day, whereupon

the series switches into the next yearly contract. Hence, over the entire sample period I rely on futures

contracts which are not redeemable in Phase I. I make this choice for several reasons. First, transactions

and volumes in the futures market are much higher than in spot markets (Kossay and Ambrosi, 2010).

Second, the time series for EUA Phase I prices is contaminated by the banking ban, which made Phase I

spot and futures contracts a different asset. Thus, real market activity shifted toward Phase II allowances

and Phase II futures prices can be considered as the reliable price signal (Convery et al., 2008). Third,

the ICE ECX market is the leading venue where 90% of the EUA price discovery takes place and the

December expiries are the most active contracts (Mizrach and Otsubo, 2011).

Energy data: The oil price is the 1-month forward Brent futures contract. The price of gas is the 1-month

ahead contract for natural gas negotiated at the National Balancing Point (NBP). I consider this gas

price, since it is the most liquid gas trading point. The coal price used is the 1-month ahead API 2

futures contract delivered to Amsterdam, Rotterdam and Antwerp (ARA). For electricity prices I use

ICE UK 1-month futures for baseload power.

Financial data: For equities I use the EURO STOXX 50 price index. The index covers 50 blue-chip

stocks from 12 euro area countries. I choose this equity index because it serves as basis for the EURO

STOXX 50 Volatility Index (see below).2 For bonds, I use a Datastream-constructed 10-year benchmark

government bond index for the European Monetary Union.3

Transition variables: The first is calendar time, scaled as t/T where t is the current observation number

and T is the sample size. The second is the level of the EURO STOXX 50 Volatility Index (VSTOXX).

The index is designed to reflect the market expectations of volatility by measuring the square root of the

implied variance across all EURO STOXX 50 options over the next 30 days. It is, by construction, a
1Estimates using data denominated in a common currency, i.e. EUR, have also been performed with the results remaining

qualitatively the same.
2For robustness, I also evaluate the broader STOXX EUROPE 600 index. Results remain qualitatively very similar but

due to space limitations are not presented here. They are available upon request.
3I choose long-term bonds over short-term bonds because monetary policy is more likely to have a confounding influence

on the latter (e.g. Christiansen, 2000). Examining corporate bonds is left for future research.
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forward-looking (implied) volatility measure rather than a description of present volatility (see Connolly

et al., 2007).

3.2 Summary Statistics

Results of the ADF and KPSS tests in Table 1 (Panel B) suggest taking first differences to obtain

stationary time series at conventional significance levels in all cases. As (logarithmic) price series are

non-stationary, I also test for pairwise cointegration among EUA and energy/financial prices based

on the Johansen procedure, but find no evidence thereof.4 Consequently, prices are transformed into

continuously compounded returns by taking natural logarithms, differencing, and multiplying by 100.

Panel A of Table 1 contains descriptive statistics for the return series which all exhibit the standard

properties of high-frequency asset returns; they are skewed, fat-tailed and a Gaussian distribution is

unambiguously rejected. Panel C summarizes information about the presence of autocorrelation and

ARCH effects. Where relevant, I will include autoregressive terms in the mean equation to account

for serial correlation. The strong signs of volatility clustering for all series point towards an ARCH

parametrization for second moments and motivate the use of a multivariate GARCH-type framework to

model co-movements between the correlated heteroskedastic time series.

[Table 1 about here]

4 Econometric Methodology

4.1 Multivariate GARCH framework

Consider a stochastic N × 1 vector of logarithmic asset returns yt = {yi,t} at time t is described by the

following model

yt = E (yt | Ωt−1) + εt (1)

εt = H
1/2
t zt (2)

where Ωt−1 is the information set about the series up until t − 1, and εt is a N × 1 vector of residuals.

Each conditional mean in yt is modeled as univariate autoregressive process with orders P (AR(P )). The

error process εt is specified by its N × N full rank conditional covariance matrix Ht which is assumed

to follow a time-varying structure, and zt, a N × 1 random error vector that is assumed to be i.i.d. with

E (zt) = 0 and V ar (zt) = IN .

The covariance matrix Ht can be decomposed into a diagonal matrix of conditional standard deviations

Dt and a matrix of conditional correlations Pt
4The results are contained in an appendix that is available upon request.
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Ht = DtPtDt (3)

Dt = diag
(
h
1/2
11,t . . . h

1/2
NN,t

)
(4)

Pt = (ρij,t) with ρii,t = 1 (5)

To ensure the positive definiteness of Ht, it is sufficient to constrain the correlation matrix Pt to be

positive definite at each point in time. The conditional variances hii,t in (4) are assumed to follow a

univariate GARCH(P ,Q) process defined as

hii,t = ω +

P∑
p=1

αpε
2
ii,t−p +

Q∑
q=1

βqhii,t−q (6)

To keep the analysis traceable, the natural starting point is a GARCH(1,1) specification, where the future

variance will be an average of the current shock, ε2t−1, and the current variance, ht−1, plus a constant.

To ensure the conditional variances are uniformly positive, the coefficients of a GARCH model must be

restricted; in a GARCH(1,1), ω > 0, α ≥ 0 and β ≥ 0.

In order to complete the definition of the model I have to specify the conditional correlation matrix in

(5).

4.1.1 Constant Conditional Correlation

The simplest multivariate correlation model that is nested in other models, is the Constant Conditional

Correlation (CCC) GARCH model of Bollerslev (1990).5 This model restricts the conditional correlations

matrix between the separate univariate GARCH processes to be time-invariant. More specifically, Ht =

DtPDt with P = (ρij). Although the CCC GARCH model simplifies the estimation of parameters,

the assumption that conditional correlations are constant is unrealistic in many empirical applications.

Therefore, the model provides a benchmark for setting the augmented models below and for testing the

constancy of correlations.

4.1.2 Smooth Transition Conditional Correlation

In the Smooth Transition Conditional Correlation (STCC) GARCH model of Silvennoinen and Teräsvirta

(2005), the conditional correlation matrix Pt is a convex combination of two positive definite matrices

P(1) and P(2) each corresponding to an extreme state of constant correlation. The correlation structure

varies smoothly between the two extreme states of constant correlations as a function of a transition

variable. More specifically, the following dynamic structure is imposed on the conditional correlation

Pt= (1−Gt)P (1) +GtP(2) (7)

5For recent surveys of multivariate GARCH models see Bauwens et al. (2006).
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where P(1) 6= P(2), and G (·) : R→ (0, 1) is a monotonic function of an observable transition variable

st ∈ Ωt−1. The transition function is the logistic function

Gt=
(

1 + e−γ(st−c)
)−1

, γ > 0 (8)

where c is the threshold parameter that determines the location of the transition, and γ determines the

slope of the function, that is, the speed of transition. When the transition variable st has values less than

c, the correlations are closer to the state defined by P(1) than the one defined by P(2), and vice versa. As

motivated above, the transition variables here are (i) calendar time or (ii) the VSTOXX index. When

γ converges to infinity, the transition function becomes a step function and the transition between the

two extreme correlation states becomes abrupt. Then, the STCC model approaches a structural break

model in conditional correlations. Bollerslev’s CCC model is obtained from the STCC model by setting

either P(1) = P(2) or γ = 0.

Having estimated a STCC GARCH model to the data at hand, the researcher may wonder whether the

transition variable of the fitted model is the sole factor influencing conditional correlations over time.

That is, whether there exists an additional factor that might affect correlations and that should not be

ignored. This brings me to another model extension.

4.1.3 Double Smooth Transition Conditional Correlation

In the Double Smooth Transition Conditional Correlation (DSTCC) GARCH model, Silvennoinen and

Teräsvirta (2009) extend the original STCC GARCH model by allowing the conditional correlation to

vary between four extreme correlation states smoothly governed by logistic functions of two transition

variables.

Pt = (1−G2t)
(
(1−G1t)P(11) +G1tP(21)

)
+G2t

(
(1−G1t)P(12) +G1tP(22)

)
(9)

Git =
(

1 + e−γi(sit−ci)
)−1

, γi > 0, i = 1, 2 (10)

The DSTCC approach introduces extra flexibility by combining the VSTOXX index with calendar time.

If s2t = t/T , at the beginning of the sample when t/T < c2, correlations move between P(11) and P(21)

depending on the transition variable s1t = V STOXXt−1: when s1t < c1, the correlations are closer to

the state in P(11) than in P(21), and when s1t > c1 the situation is opposite. Accordingly, as time evolves

and t/T > c2, P(12) and P(22) are the corresponding states at the sample end and s1t = V STOXXt−1

drives the correlation between these two matrices.
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4.2 Estimation procedure

I estimate the bivariate structure of the presented models by a quasi-maximum likelihood (QML) pro-

cedure. I start with the estimation of the CCC GARCH model with a constant level of correlation for

each bivariate combination. Then, I subsequently test the hypothesis that conditional correlations are

constant. This is of paramount importance before estimating a (D)STCC GARCH model because some

of the parameters of the alternative model are not identified if the true model has constant conditional

correlation and thus, estimating the models without first testing the constancy hypothesis may lead to

inconsistent parameter estimates. I employ a LM-type test procedure developed by Silvennoinen and

Teräsvirta (2005, 2009). These tests are conditioned on a particular transition variable and essentially

ascertain whether that particular variable affects conditional correlations.6

5 Results

5.1 Conditional mean and volatility

The results for the conditional mean yit and conditional variance hit estimation are very close to those

reported in prior studies (Benz and Trück, 2008; Chevallier, 2009) and, for the sake of brevity, I do not

present them. The AR lag length (P ) is determined using the Bayesian Information Criteria (BIC) and

produces serially uncorrelated residuals. A first-order GARCH model performs sufficiently well for all

considered series. The resulting standardized residuals show no signs of remaining serial correlation or

ARCH effects. I also check for asymmetries using the GJR GARCH model of Glosten et al. (1993). Yet,

most series show no significant asymmetric term and/or I notice that the BIC does not decrease when

replacing the standard GARCH specification.7

5.2 Conditional correlation

5.2.1 Choosing the transition variable

The evidence on changing correlations from the LM-type test procedure can be summarized as follows.

First, calendar time is an indicator of change in correlations (first column of Table 2): the null hypothesis

of constant correlations is rejected at the 1% significance level for every bivariate combination, except

for the case of carbon-bond at 5% level. Second, the volatility index seems to be a weaker indicator

of change than time (second column of Table 2). The LM test with the one-day lag of the VSTOXX

index8 as transition variable rejects only four out of the six cases. Yet, the rejection for the carbon-oil,
6A description of the QML estimation and LM-test procedure and results for the CCC GARCH model are contained in

an appendix that is available upon request.
7The full set of mean and volatility estimation and specification test results is available upon request.
8In order to facilitate the comparison of models below, I use the one-day lag of the VSTOXX index, so that the (D)STCC

GARCH estimations are based on the same information set as the CCC and DCC GARCH models.
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-coal, -stock, -bond correlation dynamics is very strong and the VSTOXX index turns out to have the

best performance for these pairs. As expected, the market uncertainty indicator conveys highly valuable

information for the carbon and financial market linkages; for carbon-stocks I observe the strongest overall

rejection. The high p-values for carbon-gas and carbon-electricity indicate that the correlation dynamics

between these markets are not directly related to the perceived level of volatility in financial markets,

which is in sharp contrast to the dynamics between carbon and oil as well as carbon and coal.

[Table 2 about here]

Table 2 also reports the LMSTCC test which evaluates whether an second transition that depends directly

on time would provide a better description of correlation dynamics than a smooth transition model with

(i) the VSTOXX index as the sole transition variable (third column) or (ii) a single time trend (last

column). Evidence in favor of the double transition model with s1t = V STOXXt−1 and s2t = t/T is

found only in one case, namely for the carbon-coal link. Moreover, the tests indicate a non-monotonic

relationship between calendar time and correlations for the carbon-financial, carbon-oil and carbon-gas

link.

Finally, (i) the strength of rejection of the null in the LMCCC is used as criterion for selecting the most

relevant transition variable in a STCC GARCH model and (ii) the strength of rejection of the null in the

LMSTCC is used as criterion to discriminate between a single and double smooth transition specification

(all corresponding p-values are listed in bold type in Table 2). Based on these criteria, the best models

are chosen for each bivariate system. Note that I select a STCC specification for carbon-gas due to the

relatively weak support for a double transition dynamic.

Figures 1 and 2 plot the estimated time-varying conditional correlations implied by the selected smooth

transition models whereas Table 3 reports all estimated parameters.

[Table 3 about here]

5.2.2 Carbon-energy market correlation

Beginning with the energy market group, conditional correlations between carbon and oil switch between

a low (0.19) and high (0.37) correlation state when expected stock volatility (i.e. the VSTOXX index)

is high, with a sustained increase during the 2008-09 period and in early 2010. The estimated transition

is rather abrupt, and one may thus speak of low and high volatility regimes. The latter regime occurs

when the VSTOXX index exceeds c=25.45, which is the case in about 36% of the observations. This

corroborates prior evidence that oil and carbon prices are closely linked (Mansanet-Bataller et al., 2007;

Alberola et al., 2008), whereby I further document that this link is directly related to the perceived

level of volatility in financial markets and stronger in turbulent times. Indeed, the carbon-oil linkage is
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a special case in the energy market group; there is a striking temporal commonality in the correlation

pattern between carbon-oil and carbon-stock markets (see below) and market uncertainty conditions

are the common driving factor. This finding sheds new light on the underlying reason for the positive

influence of oil prices on carbon prices. Prior studies discuss whether the oil price effect can be attributed

to a fuel switching effect, to the correlation between the oil and gas price, or rather to the correlation

between the oil price to economic activity (e.g. Rickels et al., 2010). The result that times with stronger

carbon-oil correlation are also likely to be times with stronger carbon-stock correlations suggests that

the link to the economic activity is the driving force behind the oil price impact.

[Figure 1 about here]

The carbon-coal correlations have four states, transitioning on VSTOXX and time. In the sample up to

the first quarter of 2008 correlations are weak (0.09) and high expected stock market uncertainty even

decreases correlations (to 0.07), yet this effect is statistically not significant. In contrast, later in the

sample, correlations shift from 0.35 to 0.44 during high VSTOXX states. Again, the correlation profile

shows a clear peak during the 2008-09 crisis. The estimated location parameter c for the VSTOXX

index is above 26 and transitions are very rapid. It is important to note, however, that regardless of the

state of uncertainty, I detect a time break with a remarkable increase in the overall level of carbon-coal

correlations. The break date is April 2008, the month in which EU ETS participants have to surrender

their allowances for the last trading year of Phase I. Indeed, with the start of Phase II, correlations are

at least four times as high as in the first trading period (P(11)vs. P(12)).

Similar breaks in the correlation regime show up for carbon-gas. In this case the estimates point to

a continuous and gradual rise (γ=29.8) of carbon-gas correlations, while for carbon-coal the change is

rather abrupt. In sum, the overall level of correlation almost triples, from 0.09 to 0.26. The transition

phase spans the period from January 2007 to February 2008, whereas the change is relatively rapid in

August 2007 (c=0.39). Thus, the increase mostly occurs within the last trading year of Phase I. The

range of correlations is in agreement with the DCC GARCH results of Koenig (2011), however, the

correlations in his model fluctuate widely and as a result evolving trends and time breaks cannot be

revealed.

Examining carbon-electricity linkages, I find another noticeable break in the correlation structure. Again,

by the end of Phase I (October 2007) correlations instantaneously climb to levels almost twice as high

(from 0.18 to 0.32). This may have crucial implications for power generation companies and their ability

to hedge the risk of adverse price movements. Following Roques et al. (2008) the cash flows of a power

plant are self-hedged to the extend that electricity, fuel and carbon prices positively co-move. In fact,

my findings suggest that the self-hedging capacity of UK power plants, which are mostly gas-fired, is

even stronger in Phase II of the EU ETS, because EUA and UK electricity prices as well as EUA and
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gas prices both exhibit strong and positive co-movements.

Summing up, I provide evidence for a stronger integration between carbon and energy markets in the

aftermath of the EU ETS Phase I. All market correlations point to a new pricing regime with an

increased dependency between EUA prices and energy prices in Phase II. The stabilized relationship

indicates that energy market fundamentals become more important in the EUA price formation. Given

that the theoretical allowance price should accurately reflect marginal abatement costs, the stronger price

linkages are an indication that the EU ETS sets the right incentives to market participants for a cost-

efficient reduction of emissions. I attribute the emergence of the new correlation regimes to the improved

institutional framework and information processing of the EUA derivatives markets. In other words, the

stabilized market dynamics indicate that changes in the EU ETS market structure prove effective. Diaz-

Rainey et al. (2011) also argue that market integration increases due to technological change facilitating

greater fuel substitution and continued liberalization policies such as EU’s third energy package. But, it

is questionable whether my sample is large enough to capture long-term trends.

Furthermore, the timing of shifts in correlations is interesting. The carbon-gas and carbon-electricity

transition patterns suggest that the tendency towards greater market integration already evolves grad-

ually in the course of 2007, which is the time when market participants, inter alia, learned about the

European Commission’s assessment of the national allocation plans for the second trading period (Eu-

ropean Commission, 2006) that paved the way to major changes of the EU ETS. The early adjustment

to new correlation regimes can be attributed to the fact that efficient carbon markets should move in

anticipation of future events and that forward-looking investors already factor in the expected changes

of the EU ETS in Phase II prior to its official introduction. In rebuttal, my results for the carbon-coal

link indicate that it took some time until Phase II changes catch on to correlations in April 2008. From

a methodological point of view, the identification of great variations in the date and pace of structural

change emphasizes the advantages of a model that endogenously determines change points in correlations.

5.2.3 Carbon-financial market correlation

[Figure 2 about here]

Turning to the financial market group, carbon-stock as well as carbon-bond correlations transition on

VSTOXX index, indicating integration with wider financial market conditions. But, the effect of uncer-

tainty on the two market correlations is directly opposed and more pronounced for the carbon-stock link.

While correlations between carbon and stock markets are insignificant (at -0.04) during periods of low

expected stock market volatility, they rise dramatically to a correlation state of around 0.36 when the

VSTOXX index climbs to higher levels exceeding c=24.84. Here, the transition between the correlation

regime is smooth due to a moderate γ-value and correlations spend most of the time between the extreme
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states. The low correlation state prevails only in about 38% of the observations, clustering mainly in

Phase I. By comparison, carbon-bond correlations switch stepwise to significantly stronger negative cor-

relations (around -0.26 from -0.01) rather than positive correlation in episodes of high VSTOXX levels.

This direction of change in the correlations is opposite to all other bivariate models.

Yet, notice the striking commonality in the timing of correlation variations, specially, with respect to

extreme crisis events (see Figure 2). Overall, my results depict that times with stronger carbon-stock co-

movements are also times with weaker carbon-bond co-movements. In particular, both correlation states

that correspond to turbulent periods peak around the Lehman Brothers failure and then persist until

around mid 2009. In the preceding period, notably the time span between the unfolding US subprime

crisis in July 2007 and September 2008, I observe frequent switches between the extreme correlation

states which are concentrated around the collapse of Bear Stearns in March 2008 and the failure of

IndyMac Bank in July 2008.9 The same strong temporal commonality in the co-movement variations

apply to the carbon-oil link. The findings indicate that the ultimate depressive effect of the financial

crisis occurs with a delay on these market linkages.10 The delayed adjustment to the crisis is in line with

Chevallier (2011) who identifies a strong episode of carbon price volatility during October 2008.

Two facts may help understand the economic rationale behind the correlation behavior. First, until the

failure of Lehman Brothers on September 15, 2008, the crisis had been severe, but largely contained within

the financial sector of the economy. However, in the aftermath of the collapse, it became apparent that

the subprime crisis would permeate the real economy and sharply slow down economic growth (see, e.g.

Caballero et al., 2008). This caused a decrease in industrial production and energy demand, curbing the

demand for carbon allowances, which fostered incentives to sell EUAs. Second, as a consequence of the

credit-constrained economic environment in the course of the crisis, funding needs of companies increased

and selling EUAs was a proper strategy in order to obtain the cash needed (Kossoy and Ambrosi, 2010).

Thus, EUA prices plummeted just as stock prices did and the joint downward price movements during

the financial crisis boil down to the higher correlation regime. This finding indicates that the market

mechanism of the EU ETS accurately reflects expectations for the amount of abatement required to

meet emission caps under an altered macro-economic scenario. On the other hand, the negative carbon-

bond correlation observed during the financial crisis may be ascribed to a broader “flight-to-quality”

phenomenon, where increased risk perception induces investors to flee risky assets in favor of bonds,

inducing a price decoupling of carbon and stock price on the one hand, and bond prices on the other

hand. Figure 2 further depicts that the high expected stock market uncertainty due to the European

sovereign debt crisis in 2010, which affected, amongst others, Greece and Ireland, again has a crucial

impact on market linkages with more negative carbon-bond and more positive carbon-stock correlations.
9Note that both Lehman Brothers and Bear Stearns had been active players in the European carbon market (Kossoy

and Ambrosi, 2010).
10Recall that the first interest rate cut by the US Federal Reserve in July 2007 is mostly viewed as the start of the

subprime crisis.

13



One way of illustrating the functioning of the STCC GARCH models is to plot the conditional covariance

(Ht in Eq. 3) between carbon and financial market against unexpected price shocks in the markets (εt in

Eq. 2) from the last period. This is done separately for times of distress and calm periods via the use of

covariance news impact surfaces (NIS) developed by Kroner and Ng (1998).11 Figure 3 plots the NIS on

a shock grid of [-2,2] during periods of extreme high volatility (VSTOXX=35) and extreme low volatility

(VSTOXX=15). As expected, the curvature of both surfaces become steeper during high VSTOXX

states, due to the higher (lower) level of carbon-stock (carbon-bond) correlations. Thus, large carbon

and stock (bond) market shocks, regardless of their signs, are associated with higher (lower) conditional

covariance. On the contrary, the surfaces are fairly flat during low VSTOXX states, indicating a muted

effect of news on covariances in calm periods. However, it is worth pointing out the opposite reaction

of carbon-stock covariances on shocks in low volatility periods: large carbon and stock market shocks,

regardless of their sign, are now associated with slightly lower covariances. Notice also the different

shape of the two NIS for the covariance in both volatility states. While the carbon-stock surface is

clearly bowl-shaped, the carbon-bond surface is, to some degree, U-shaped along the axis for carbon

market return shocks. This suggests that shocks in the bond market have only a modest impact on the

covariance, which stands in contrast to the stock market shocks.

[Figure 3 about here]

In summary, my results provide strong evidence for the existence of a link between carbon and financial

markets. This is in stark contrast to the influential papers of Chevallier (2009), Daskalakis et al. (2009)

and Hintermann (2010) that document a market segmentation. Indeed, the degree of price linkages

heavily depends on market uncertainty conditions and is exacerbated during the recent financial crisis.

In times of distress, when market players expect high volatility, common macroeconomic shocks connect

the markets, while they are segmented in calm periods. The VSTOXX index is a useful state variable

that is informative about the uncertainty or risk of common shocks often associated with extreme crisis

events that shift correlations. In this respect, the results are also significant for investors seeking for

portfolio diversification. EUAs would offer diversification benefits to investors in traditional asset classes

when correlations are low and remain low during periods of market turbulence. As this is apparently

not the case for the carbon-stock link, the diversification potential of EUAs to equity market investors

is much weaker than believed (Mansanet-Bataller and Pardo, 2008). In contrast, an investor holding a

portfolio with longer-term governmental bonds might benefit from introducing EUAs to her investment

set.
11The NIS of conditional covariances are a function of the two conditional variances and the conditional correlations,

which, in turn, are a function of the transition variable, namely the the lagged VSTOXX index. For a formal presentation,
see Silvennoinen and Teräsvirta (2005). To calculate the surfaces, I also fix the GARCH effects at the unconditional values.
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6 Conclusion

In this paper I investigate how linkages between the EUA price and market fundamentals vary over time.

My multivariate GARCH approach is designed to accommodate, for the first time, the different behaviors

of correlations in times of distress compared to calm periods and the presence of structural breaks in

correlation patterns, often triggered by policy events or institutional changes. I present evidence favoring

closer carbon and energy price linkages in the second phase of the EU ETS. I document clear upward shift

in the level of overall correlations which translate into carbon-coal(gas) correlations that are four (three)

times as high in Phase II as in Phase I. Also carbon-electricity correlations climb to levels almost twice as

high. I attribute the emergence of the new correlation regimes to the improved institutional framework

and information processing of the EUA market. The stronger price linkages are an indication that energy

market fundamentals become more important in the EUA price formation, which would have an positive

effect on the cost-efficiency of the EU ETS. In contrast to previous studies, another important finding of

my analysis is that carbon and financial markets are not segmented. Rather, correlations heavily depend

on market conditions. In particular, high expected stock market volatility shifts carbon-stock correlation

significantly upwards.
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Figure 1: Conditional correlations between carbon and commodity futures
The figure shows estimated conditional correlations from the fitted bivariate (D)STCC GARCH models listed in Table 3.
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Figure 3: News impact surfaces for covariances

The figure displays the estimated news impact surfaces for the covariance between (i) carbon and stock return shocks (top) and (ii)
carbon and bond return shocks (bottom) under the bivariate STCC GARCH models when the transition variable is the one-day
lagged VSTOXX index. On the left hand side the transition variable is fixed to a value that indicates extreme high stock market
volatility; on the right hand the transition variable is fixed to a value that indicates extreme low volatility.
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Table 1: Summary statistics of the data

Panel A presents descriptive statistics of daily returns for EU Allowance futures (EUA), Brent crude oil futures (OIL), UK natural
gas futures (GAS), API 2 coal futures (COAL), UK baseload electricity futures (ELEC), EURO STOXX 50 index (STOCK),
10-year government bond index (BOND) and Certified Emission Reduction futures (CER). Panel B reports test statistics of the
Augmented-Dickey-Fuller (ADF) and Kwiatkowski, Phillips, Schmidt and Shin (KPSS) tests. Panel C presents test statistics for
the presence of autocorrelation and ARCH effects. AC LM is a Lagrange Multiplier test with a heteroskedasticity robust estimator
for testing the null of no serial correlation up to a lag length of 5 and 20. The ARCH LM test is based on Engle (1982) and
implemented as a regression of squared residuals on lagged squared residuals (1 and 10 lags). The sample period is from April 22,
2005 to April 21, 2011. * and ** denote significance at 5%, and 1%, respectively.

EUA OIL COAL GAS ELEC STOCK BOND

Panel A: Descriptive statistics

Meana -0.13 13.38 10.59 10.28 8.52 -0.22 0.69

Std. Dev.a 42.27 33.69 28.52 73.15 50.91 24.22 5.67

Minimum -28.82 -10.24 -10.82 -26.28 -24.28 -8.21 -1.52

Maximum 18.65 12.64 8.32 47.77 34.08 10.44 1.61

Skewness -0.97 0.09 -0.68 2.63 1.92 0.07 0.07

Kurtosis 15.95 5.89 8.60 22.40 22.98 10.46 4.34

Jarque-Bera (p-value) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel B: Stationarity

ADF -10.31** -8.40** -32.66** -24.09** -6.01** -18.53** -27.74**

KPSS 0.04 0.11 0.14 0.06 0.08 0.14 0.07

Panel C: Autocorrelation and ARCH tests

AC LM(5) 11.17* 2.92 20.75** 10.67 8.48 6.60 8.06

AC LM(20) 33.84* 24.93 32.08* 25.51 21.12 13.40 19.44

ARCH LM(1) 7.36** 5.71* 12.64** 2.96 4.76* 5.00* 16.93**

ARCH LM(10) 26.35** 44.29** 29.66** 10.94 18.08* 30.31** 61.56**

a Mean returns and standard deviations are given in annualized percentage points.
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Table 2: LM test results

This table reports the statistics and corresponding p-values from bivariate tests of constant correlations against a STCC GARCH
model (LMCCC) and from bivariate tests of a STCC against a DSTCC GARCH model (LMSTCC). The transition variables in the
tests are calendar time (t/T) and the one-day lag of the VSTOXX index (VSTOXXt-1). The p-values listed in bold type indicate
the selected most relevant transition variable(s) for each bivariate asset combination.

t/T VSTOXXt-1 VSTOXXt-1 and t/T t/T and t/T

LMCCC p-value LMCCC p-value LMSTCC p-value LMSTCC p-value

EUA-OIL 13.6318 0.0035 19.8526 8x10-6 0.2163 0.6419 10.9683 0.0009

EUA-COAL 30.1360 4x10-8 32.4736 1x10-8 10.9943 0.0009 0.2289 0.6323

EUA-GAS 10.5969 0.0011 2.1383 0.1437 - - 3.2673 0.0707

EUA-ELEC 8.8783 0.0029 0.1925 0.6608 - - 0.2271 0.6337

EUA-STOCK 11.9488 0.0005 41.2401 1x10-10 2.5282 0.1118 4.9377 0.0263

EUA-BOND 5.8607 0.0155 25.8439 4x10-7 0.0490 0.8248 9.6185 0.0019

23



Table 3: Selected smooth transition conditional correlation model

This table reports estimated parameter values for preferred smooth transition conditional correlation models which depend on
transition variable si. ci is the threshold parameter that determines the location of the transition, and γi determines the speed
of transition. Date is the day that corresponds to ci when si = t/T . With one transition variable conditional correlations move
between P(11) and P(21) depending on the transition variable s1: when s1 < c1, the correlations are closer to the state in P(11)

than in P(21), and when s1 > c1 the situation is opposite. With two transition variables, P(12) and P(22) are two additional
correlation states at the sample end when t/T > c2. Again, s1 drives the correlation between the two added matrices. Values in
parentheses are Bollerslev-Wooldridge QML standard errors.

s1 s2 P(11) P(21) P(12) P(22) c1 c2 γ1 γ2 Date

Panel a

EUA-OIL V STOXX 0.189 0.366 25.454 500

(0.031) (0.035) (0.819) (.)

EUA-COAL V STOXX t/T 0.087 0.069 0.354 0.441 26.082 0.494 500 500 17-Apr-2008

(0.037) (0.129) (0.050) (0.036) (0.177) (0.003) (.) (.)

EUA-GAS t/T 0.088 0.255 0.386 29.801 22-Aug-2007

(0.033) (0.040) (0.046) (42.595)

EUA-ELEC t/T 0.176 0.322 0.404 500 02-Oct-2007

(0.034) (0.033) (0.026) (.)

Panel b

EUA-STOCK V STOXX -0.042 0.364 24.838 4.773

(0.051) (0.046) (1.601) (2.438)

EUA-BOND V STOXX -0.011 -0.255 25.415 500

(0.033) (0.038) (0.657) (.)
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