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Abstract	

	
In	the	majority	of	domestic	demand-side	response	(DSR)	programmes	that	have	taken	place,	

the	principal	driver	for	consumers	to	participate	has	been	financial.	However,	on	most	

programmes	where	consumers	can	benefit	from	cheaper	electricity,	they	risk	paying	more	if	

they	use	a	lot	of	their	electricity	at	peak	times.	As	a	consequence,	consumers	who	are	risk	

averse	are	likely	to	be	less	willing	to	participate	in	DSR	programmes	(Faruqui,	2010;	

Neuberg,	2013).		

	

However,	while	some	consumers	might	not	be	prepared	to	engage	in	price-based	DSR,	

studies	have	shown	that	other	motivations	-	such	as	helping	to	reduce	the	likelihood	of	

power	cuts	or	lowering	environmental	emissions	-	can	motivate	consumers	to	participate	

(Gyamfi	&	Krumdieck,	2011).	At	the	same	time,	as	the	proportion	of	renewable	energy	in	

the	system	mix	grows,	the	importance	of	residential	DSR	in	helping	to	balance	supply	and	

demand	is	likely	to	increase	(Alizadeh	et	al.	2016;	Ward	et	al.	2014)		

	

This	paper	describes	a	domestic	DSR	trial	that	took	place	in	the	England	from	May	2015	to	

September	2015.	The	trial	examined	how	participants	would	respond	to	information	only	

signals	to	vary	their	electricity	use	depending	on	prevailing	generation	from	wind.	During	

the	trial,	households	were	sent	notifications	requesting	that	they	either	increase	electricity	

consumption	(‘turn	up’	events)	or	reduce	electricity	consumption	(‘turn	down’	events)	

depending	on	how	much	electricity	was	being	generated	from	wind	across	the	UK.		

	

Electricity	consumption	was	monitored	throughout	the	trial	and	consumption	during	events	

was	compared	with	a	reference	load	which	was	established	for	each	of	the	households.	On	

average,	trial	households	reduced	their	electricity	consumption	by	9.9%	during	‘turn	down’	

events	and	increased	their	electricity	consumption	by	4.4%	during	‘turn	up’	events.	The	

implications	of	these	results	for	the	use	of	non-financial	DSR	programmes	to	balance	the	

supply	of	renewable	energy	with	energy	demand	are	discussed.	

	

	

	

	
	
	
	
	
	
	



	
1. Introduction		

	

Renewables	are	the	second-largest	generator	of	electricity	in	the	world,	after	coal,	and	are	

set	to	overtake	coal	in	the	early	2030s	(IEA	2015).	In	the	UK,	64,654	gigawatt-hours	of	

electricity	were	generated	from	renewables	in	2014,	with	nearly	half	of	this	coming	from	

offshore	and	onshore	wind	(Special	feature	–	Renewable	Energy	in	2014).	While	rapid	

growth	in	renewable	generation	will	be	necessary	if	the	UK	is	to	decarbonise	its	electricity	

system	and	meet	ambitious	climate	change	targets,	managing	the	variable	nature	of	these	

resources	requires	increased	system	flexibility.	As	renewable	generation	displaces	energy	

produced	by	conventional	power	plants,	the	need	for	ancillary	services	to	balance	supply	

and	demand	will	increase.	However,	if	these	services	are	supplied	by	conventional	

generation	running	part-loaded,	this	will	reduce	the	efficiency	of	system	operation,	

undermine	the	potential	to	accommodate	low	carbon	generation,	increase	emissions	and	

lead	to	higher	bills	for	consumers	(Strbac,	2016).		

	

In	this	regard,	the	National	Infrastructure	Commission	has	found	that	increasing	capability	

for	demand-side	response	(DSR)	–	along	with	greater	use	of	interconnection	and	storage	–	

could	save	consumers	up	to	£8	billion	a	year	by	2030,	help	the	UK	meet	its	2050	carbon	

targets	and	secure	the	UK’s	energy	supply	(Smartpower,	2016).	DSR	can	be	defined	as	

“customers	responding	to	a	signal	to	change	the	amount	of	energy	they	consume	from	the	

grid	at	a	particular	time”	(Ofgem,	2013,	1).	On	most	DSR	programmes,	this	signal	has	taken	

the	form	of	financial	incentives	for	using	electricity	at	certain	times	through	two	financial	

mechanisms:	incentive	payments	and	dynamic	pricing	(Kim	and	Shcherbakova,	2011;	Chan	

et	al,	2014;	Song	et	al	2014).	Incentive-based	programmes	use	demand	as	a	reserve	to	

balance	the	power	system	and	maintain	reliable	operation	through	direct	load	control	or	

voluntary	methods	such	as	curtailable	or	interruptible	programmes.	Price-based	

programmes	seek	to	improve	the	economic	efficiency	of	power	systems	and	include	

programmes	such	as	time-of-use	pricing,	critical	peak	pricing	and	real-time	pricing,	which	

aim	to	flatten	load	curves	by	charging	consumers	lower	prices	in	off-peak	hours	and	higher	

prices	in	peak	hours	(ibid).		

	

Residential	demand-side	response	in	the	UK	
	

In	the	UK,	households	are	responsible	for	the	largest	share	of	electricity	demand:	30%	of	

total	electricity	consumption	in	2014,	a	greater	proportion	than	either	the	commercial	

sector	(21%)	or	the	industrial	sector	(26%)(Dukes,	2015).	The	residential	sector	also	

accounts	for	approximately	half	of	all	electricity	consumed	during	the	system	peak	between	

5:00pm	and	7:30pm	(Hesmondhalgh	et	al,	2014).	These	features	of	residential	demand	–	

along	with	the	fact	that	the	electrification	of	heat	and	transport	could	double	demand	for	

peak	electricity	by	2030	(Pudjianto	et	al,	2013)	–	highlight	the	important	role	that	residential	

DSR	could	play	in	changing	patterns	of	electricity	demand.	

	

DSR	tariffs	have	been	available	for	domestic	consumers	in	the	UK	for	some	time;	around	4.5	

million	customers	are	already	on	multi-rate	electricity	tariffs,	which	provide	discounted	

electricity	during	the	night	(Torriti	et	al,	2010).	These	tariffs	–	originally	introduced	in	the	

1960s	–	were	designed	to	operate	alongside	night	storage	heaters	to	increase	the	use	of	



continuous	base	load	from	nuclear	generation	during	the	night.	In	recent	years,	Ofgem	has	

sponsored	two	trials	examining	how	consumers	respond	to	DSR	tariffs:	the	Customer	Led	

Network	Revolution	time-of-use	trial	and	the	Low	Carbon	London	dynamic	time-of-use	trial.	

The	former	explored	consumer	response	to	a	tariff	which	charged	99%	above	standard	rates	

for	electricity	between	4:00pm	and	8:00pm	on	weekday	evenings	and	below	standard	rates	

at	all	other	times	(Wardle	et	al,	2013).	On	average,	participating	households	reduced	

demand	at	peak	times	by	0.1	kW	per	hour	(ibid).	The	latter	trial	explored	how	consumers	

would	respond	to	a	dynamic	time-of-use	tariff	with	variable	rates	which	depended	on	

prevailing	generation	from	wind	(Schofield	et	al,	2014).	Households	on	the	trial	increased	

demand	by	an	average	of	0.1kW	per	hour	during	low	price	periods	and	decreased	demand	

by	an	average	of	0.1kW	per	hour	during	high	price	periods	on	weekdays	that	occurred	

during	the	morning	and	evening	peaks	(ibid).	

	
2. Using	non-financial	considerations	to	motivate	participation	in	DSR	

	
While	the	commercial	value	of	residential	DSR	programmes	–	and	in	particular,	dynamic	DSR	

–	is	likely	to	grow	as	the	share	of	renewable	energy	in	the	system	mix	increase	(Alizadeh	et	

al,	2016;	Strbac,	2016),	it	may	be	injudicious	for	suppliers	to	rely	solely	on	financial	

incentives	to	encourage	consumers	to	participate.	Studies	have	shown	that	both	loss-averse	

and	risk-averse	consumers	are	less	willing	to	switch	to	DSR	tariffs	(Fell	et	al,	2015;	Neuberg,	

2013).	The	modest	savings	to	be	gained	from	financial	DSR	programmes	may	discourage	

other	consumers	from	participating;	analysis	commissioned	by	DECC	predicts	that	up	to	

2030,	consumers	on	DSR	tariffs	will	save	less	than	£90	annually	per	household	(Redpoint	

and	Element	Energy,	2012).	As	Kim	and	Shcherbakova	(2011)	argue,	this	limited	potential	

for	savings	may	mean	that,	“it	may	not	be	worth	a	customer’s	effort	to	invest	in	

understanding	time-varying	prices	that	demand	response	programs	offer	and	to	participate	

in	them”	(876).	

	

These	considerations	suggest	that	financial	incentives	alone	may	be	insufficient	to	motivate	

a	broad	range	of	domestic	consumers	to	participate	in	DSR.	Studies	have	shown	that	some	

consumers	can	be	motivated	to	participate	by	considerations	other	than	price	(Gyamfi	and	

Krumdiek,	2011;	Strengers,	2010;	Onzo,	2011).	In	a	mail-back	survey	study	conducted	in	

Christchurch,	New	Zealand	respondents	were	asked	to	indicate	the	importance	of	price,	

energy	security	and	environmental	protection	as	reasons	for	engaging	in	DSR;	all	three	were	

found	to	be	motivating,	with	security	performing	as	strongly	as	price	(Gyamfi	and	Krumdiek,	

2011).	In	another	study	–	in	New	South	Wales	from	2006-2008	–	consumers	were	asked	to	

reduce	demand	during	dynamic	DSR	events.	They	responded,	in	the	absence	of	financial	

incentives,	by	reducing	demand	by	13%	during	events	in	the	summer	and	by	11%	during	

events	in	the	winter	(Strengers,	2010).		UK	consumers	have	likewise	reduced	demand	in	

response	to	information-only	programmes.	Between	October	2010	and	June	2011,	Scottish	

and	Southern	Electricity	issued	25,000	customers	with	in-home	displays	which	provided	a	

visual	reminder	between	4:00pm	and	7:00pm	that	the	electricity	system	was	under	

increased	load.	Customers	responded	by	reducing	demand	by	an	average	of	5%	at	these	

times	(Onzo,	2011).			

	

The	fact	that	some	consumers	are	willing	to	engage	in	DSR	in	the	absence	of	financial	

incentives	has	led	to	recommendations	that	further	studies	be	commissioned	to	examine	



the	use	of	non-financial	signals	to	facilitate	DSR	(Hall	et	al,	2016;	Song,	2014;	Strengers	

2010).	Strengers,	for	example,	suggests	that	since	some	consumers	have	non-rational	

motivations	for	responding	to	DSR	programmes	–	such	as	a	desire	to	contribute	towards	the	

‘common	good’	–	“entrenched	assumptions	underpinning	variable	pricing	programs	need	to	

be	expanded	and	extended	to	consider	other	potential	theories,	methods	and	motivations	

for	change”	(ibid,	7320).	Similarly,	Hall	et	al	(2016)	suggest	that	further	DSR	research	should	

be	commissioned	“to	explore	non-economic	influences”	(72).		

	

While	some	studies	have	explored	how	consumers	respond	to	electricity	prices	that	vary	

according	to	wind	generation	(Schofield	et	al,	2014),	no	known	studies	have	explored	

whether	consumers	would	change	their	consumption	patterns	in	response	to	information-

only	signals	about	the	availability	of	wind	power.	This	paper	describes	a	trial	conducted	in	

Southern	England	from	May	to	September	2015,	which	was	designed	to	investigate	two	

principal	questions:	

	

• Would	participating	households	respond	to	information-only	notifications	about	

wind	generation	by	changing	demand	patterns?	

• If	so,	what	level	of	response	would	they	provide?	

	

This	paper	describes	the	trial	in	detail.	Section	3	explains	how	participants	were	recruited	

and	provides	socio-demographic	details	relating	to	the	sample.		Section	4	presents	the	

experimental	design	and	Section	5	summarises	the	results.	Finally,	Section	6	discusses	some	

limitations	of	the	research	and	conclusions.	

	

3. Trial	recruitment	and	participant	socio-demographics		

	

An	invitation	to	participate	in	the	trial	was	circulated	through	several	channels,	including	the	

Centre	on	Innovation	and	Energy	Demand	website	(Centre	on	Innovation	and	Energy	

Demand,	2015),	the	Your	Energy	Sussex	Twitter	account	and	the	West	Sussex	County	

Council	email	bulletin.	The	call	for	participation	explained	that	since	electricity	cannot	be	

easily	stored,	DSR	programmes	of	this	nature	could	prevent	electricity	from	being	wasted	

and	help	to	promote	wind	energy.	In	the	event,	46	households	from	Southeast	England	

agreed	to	participate.	

	

Since	participants	self-selected	for	the	trial,	it	is	important	to	acknowledge	the	possible	

effect	that	sample	selection	bias	may	have	had	on	the	results	of	the	study.	Ek	and	

Söderholm	(2010)	have	shown	that	participants	who	choose	to	participate	in	energy-saving	

experiments	often	have	high	levels	of	environmental	awareness	and	are	inherently	

motivated.	However,	rather	than	representing	a	drawback	in	the	methodological	approach,	

the	fact	that	the	sample	was	likely	to	consist	of	consumers	with	greater	environmental	

awareness	was	considered	advantageous:	the	study	aimed	to	investigate	how	

environmentally	motivated	consumers	would	respond	to	requests	to	change	household	

consumption	patterns.		

	

In	order	to	obtain	socio-demographic	information	about	the	households,	participants	were	

asked	to	complete	an	online	questionnaire.	Table	1	provides	details.	

	



	

	

Table	1:	Socio-demographic	information	

	 	 	

Household	location	 East	Sussex	 20	

	 West	Sussex	 12	

	 London	 8	

	 Other
1
	 6	

Household	ownership	 Owner	 35	

	 Renter	 11	

Gender	-	lead	
participant	
	

Male	

Female	

25	

21	

Household	members	 1	 4	

	 2	 15	

	 3	 7	

	 4	 16	

	 5+	 4	

	

Household	income	 £100	-	£199	 1	

	 £200	-	£299	 1	

	 £300	-	£399	 2	

	 £400	-	£499	 3	

	 £500	-	£599	 1	

	 £600	-	£699	 0	

	 £700	-	£799	 3	

	 £800	-	£899	 4	

	 £900	-	£999	 7	

	 £1000+	 15	

	 Don’t	know/prefer	

not	to	say	

9	

	

Compared	to	members	of	the	UK	as	a	whole,	participants	came	from	households	with	

greater	than	average	combined	household	incomes	and	were	also	more	likely	to	own	their	

own	homes	(Office	for	National	Statistics,	2012).	On	average,	participating	households	were	

also	somewhat	larger,	with	a	larger	share	of	four-person	and	five-person+	households	than	

average	for	the	UK	(ibid).	

	
	
	
	
	
	
	
																																																								
1	West	Midlands,	Cornwall,	South	East,	Norfolk,	Portsmouth,	Cambridge	



	
4. Experimental	design	

	

Data	collection		

	
Three	devices	were	used	to	set	up	the	experiment:		

	

• a	device	for	measuring	household	electricity	consumption,	which	was	attached	to	

each	household’s	electricity	meter;		

• an	in-home	display;	and		

• an	‘internet	bridge’.		

	

The	in-home	display	allowed	participants	to	choose	to	display	real-time	information	about	

their	energy	consumption	in	either	kilowatt-hours	(kWh),	expenditure	or	carbon	dioxide	

emissions	per	hour.	By	default	it	showed	consumption	in	pence	per	hour	as	seen	in	Figure	1.		
	

Figure	1:	Geo	Solo	II	in-home	display		

	

	

	

The	internet	bridge	was	connected	to	each	household’s	broadband	router,	enabling	

household	members	–	as	well	as	the	project	analyst	–	to	access	detailed	electricity	

consumption	information	via	the	‘energynote’	platform	(Energynote,	2014).	This	

information	included	historical	electricity	consumption	data	presented	either	daily,	weekly,	

monthly	or	seasonally.	The	data	was	recorded	at	15-minute	intervals	and	downloaded	for	

analysis	from	the	energynote	accounts.	

	

Events	

	
Twenty-four	‘turn-up’	events,	where	participants	were	asked	to	increase	their	electricity	

consumption,	and	16	‘turn-down’	events,	where	participants	were	asked	to	reduce	

consumption,	were	held	between	23	June	2015	and	5	September	2015.	Five	events	took	

place	in	June,	19	in	July,	14	in	August	and	two	in	September.	Each	event	lasted	for	between	

two	and	18	hours.	Households	registered	one	or	more	mobile	phones	on	which	to	receive	

event	notifications	by	text	and	could	also	opt	to	receive	notifications	by	email.	Two	

notifications	of	each	event	were	sent:	the	first	a	day	in	advance	and	the	second	an	hour	

beforehand.	The	first	gave	participants	the	opportunity	to	plan	how	they	might	respond	

during	the	event,	while	the	second	reminded	them	that	the	event	was	about	to	start.		

	
	



Timing	
The	timing	of	events	was	based	on	information	from	National	Grid’s	wind	forecasting	tool,	

which	is	published	on	the	Balancing	Mechanism	Reporting	System	(BMRS)	website	(BM	

Reports,	2014).	The	tool	forecasts	total	electricity	generation	for	the	following	72	hours	

from	windfarms	visible	to	National	Grid	(combined	capacity	of	8972	MW).	This	data	was	

analysed	daily	throughout	the	trial	in	order	to	determine	the	timing	and	duration	of	events.	

Turn-down	events	were	scheduled	for	periods	when	predicted	output	from	all	wind	farms	

combined	was	under	850	MW,	which	represents	under	10%	of	maximum	installed	wind	

capacity.	Turn-up	events	were	scheduled	when	predicted	output	from	all	wind	farms	

combined	was	over	3000	MW,	representing	more	than	33%	of	total	installed	wind	capacity.		
	

Figure	2	shows	an	example	of	this	forecast	data	for	the	period	between	midnight	on	1	July	

2015	(the	first	‘1’	on	the	X	axis)	and	10:00pm	on	3	July	2015	(the	last	‘45’	on	the	X	axis).	

Minimum	generation	was	predicted	to	take	place	between	7:00am	and	11:00am	on	3	July	

(15-23	on	the	X	axis).	Since	generation	was	forecast	to	be	under	850	megawatts	over	this	

period,	a	turn-down	event	was	scheduled	(Event	7).	

	

Figure	2:	Forecast	of	total	electricity	generation	from	windfarms	monitored	by	National	Grid		

	
	

The	timing	of	events	is	shown	in	Tables	2	and	3.	The	green	events	in	Table	2	were	turn-up	

events	(n=24)	and	the	red	events	in	Table	3	were	turn-down	events	(n=16).	



Table	2:	Turn-up	events	
	
	
	 3	 4	 6	 8	 10	 11	 13	 14	 15	 17	 19	 21	 22	 23	 25	 27	 29	 32	 33	 34	 35	 36	 39	 40	
12am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
6am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
7am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
8am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
9am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
10am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
11am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
12pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
6pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
7pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
8pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
9pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
10pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
11pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

Event	number	



Table	3:	Turn-down	events	
	
	
	 1	 2	 5	 7	 9	 12	 16	 18	 20	 24	 26	 28	 30	 31	 37	 38	
12am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
6am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
7am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
8am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
9am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
10am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
11am	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
12pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
6pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
7pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
8pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
9pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
10pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
11pm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Event	number	



Estimating	demand	response	
	
The	study	used	a	within-subjects	design,	since	all	participating	households	were	subject	to	
all	treatments.	Estimations	of	response	were	calculated	by	comparing	average	electricity	
consumption	values	calculated	for	the	households	over	a	six-week	baseline	monitoring	
phase	–	which	took	place	from	10	May	to	22	June	–	with	consumption	values	which	were	
recorded	during	events.		
	

	
Reference	consumption	(RChk)	values	were	calculated	for	each	household	(h)	for	each	event	
period	(k)	–	where	the	latter	is	defined	as	the	the	day	of	the	week	and	the	period	during	the	
day	of	the	corresponding	event.	This	involved	measuring	the	electricity	consumption	in	each	
household	during	each	of	the	periods	within	the	monitoring	stage	that	corresponded	with	
the	events	(i=1,…Nhk),	and	taking	the	mean:		
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The	resulting	values	(RChk)	provide	estimates	of	the	counterfactual:	in	other	words,	what	the	
electricity	consumption	in	the	households	would	have	been	during	those	event	periods	had	
they	not	been	exposed	to	the	treatment.			
	
Since	household	routines	which	affect	electricity	consumption	are	more	likely	to	recur	at	
similar	times	(Cetin	et	al,	2014;	Powells,	2014),	RChk	values	were	calculated	from	
consumption	data	collected	over	the	same	hours	and	on	the	same	days	of	the	week	as	the	
events	themselves.	This	approach	increased	the	likelihood	that	the	values	would	reflect	the	
typical	electricity	consumption	of	the	households	for	these	periods.	To	further	reduce	the	
potential	for	bias,	reference	consumption	values	were	only	calculated	for	event	periods	
where	a	minimum	of	three	data	points	were	available	(ie,Nhk	≥	3).	This	helped	to	ensure	that	
RChk	values	would	be	a	credible	representation	of	typical	demand:	using	participants’	own	
consumption	data	as	a	reference	load	requires	the	availability	of	multiple	data	points	with	
similar	conditions	to	those	observed	during	events	(Cappers,	2013).		
	
The	second	stage	of	the	analysis	involved	calculating	the	difference	between	the	
consumption	of	each	household	during	the	event	period	(EChk)	and	the	corresponding	
reference	consumption	(RChk).	This	was	expressed	in	absolute	terms	(Δhk)	and	as	a	
percentage	(Phk)	of	the	reference	consumption:	
	
	
	
	

h = household (h=1,..Nh) 
k = event (k=1,..Nk) 
i = baseline monitor period (i=1,..Nhk) 
Nhk = number of baseline monitor periods for event k in household h  
RChki = energy consumption in baseline monitor period i for event k in household h (kWh) 
RChk = baseline energy consumption for event k in household h (kWh) 
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Missing	data	
Occasionally,	it	was	not	possible	to	produce	RChk	or	EChk	values	for	particular	households	for	
particular	event	periods	(k),	due	to	missing	data.	In	most	cases,	this	occurred	because	in-
home	displays	had	been	accidentally	unplugged.	However,	in	the	case	of	one	household,	
problems	with	the	electricity	supply	led	to	missing	data.	In	all	cases	where	data	was	missing	
for	a	household	for	an	event	the	household’s	data	for	that	event	was	excluded	from	the	
analysis	to	prevent	bias.	
	

5. Results				
	
Event	response		
	
Figure	3	shows	the	percentage	change	in	electricity	consumption	for	all	households	
combined	for	each	event	relative	to	the	reference	consumption	for	all	households	
combined.	Turn-down	events	are	shown	in	red	and	turn-up	events	are	shown	in	green.	
	
Figure	3:	Combined	household	response	during	events		
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Of	the	40	events	held,	16	were	turn-down	events	and	24	were	turn-up	events.	The	
combined	consumption	of	the	households	during	turn-down	events	was	lower	than	
corresponding	combined	reference	consumption	values	for	14	of	the	16	events.	The	
combined	consumption	of	the	households	during	turn-up	events	was	higher	than	
corresponding	combined	reference	consumption	values	for	19	of	the	24	events.	Further	
details	regarding	the	events	–	including	comparisons	between	reference	and	actual	event	
consumption	as	well	as	significance	tests	–	are	set	out	in	Tables	4	and	5.		
	
The	greatest	response	was	recorded	during	Event	10	(from	1:00pm	to	4:00pm	on	6	July),	
when	households	used	28.7%	more	electricity	than	during	the	corresponding	reference	
period	(13.42	kWh	more	electricity).	At	the	other	end	of	the	spectrum,	the	lowest	response	
was	recorded	during	Event	34	(from	10:00am	to	9:00pm	on	23	August),	when	households	
used	16.6%	less	electricity	(44.57	kWh),	even	though	they	had	been	asked	to	try	to	increase	
consumption.	The	anomalous	response	to	this	and	several	other	turn-up	events	(Events	15,	
21	and	25)	was	explored	in	the	post-trial	interviews	and	was	found	to	have	resulted	from	
household	members	being	away	from	home	during	these	events,	and	as	such	consuming	
minimal	electricity.	
	
Participant	response	
	
In	line	with	recommended	practice	(Cappers,	2013),	and	to	facilitate	comparison	of	the	
response	seen	in	this	study	with	other	DSR	studies,	two	measurements	of	response	are	
reported:	
	

• Average	kWh	change	per	event	hour	–	the	mean	household	response	per	event	hour	
to	turn-up	events	was	18.3W	and	the	mean	household	response	to	turn-down	
events	was	44W.	The	mean	household	response	per	event	hour	across	both	event	
types	was	30W.	

• Average	percentage	change	in	energy	use	per	event	hour	–	this	was	an	average	
decrease	in	electricity	use	of	9.9%	per	hour	for	turn-down	events	and	an	average	
increase	in	electricity	use	of	4.4%	for	turn-up	events.	The	mean	household	
percentage	change	in	consumption	per	event	hour	taking	into	account	both	turn-up	
and	turn-down	events	was	6.8%.	

	
As	was	also	seen	in	the	Customer	Led	Network	Revolution	and	Low	Carbon	London	DSR	
trials	(Schofield,	2014;	Bulkeley,	2014),	there	was	considerable	variability	in	the	response	
provided	by	households,	with	the	average	percentage	change	in	household	consumption	to	
all	events	ranging	from	-16%	for	the	least	responsive	household	to	+52%	for	the	most	
responsive	household.	Negative	percentages	indicate	that	a	household	tended	to	consume	
more	electricity	than	its	reference	consumption	during	turn-down	events	and/or	less	
electricity	than	its	reference	consumption	during	turn-up	events.		
	
	
	
	
	
	



	
Figure	3:	Average	percentage	change	in	electricity	demand	by	household	
	

	
	
The	response	from	households	was	also	ranked	in	terms	of	load	shifted	(in	kWh/event	
hour).	This	revealed	considerable	variation	in	response:	the	response	from	the	top	25%	of	
households	was	three	times	greater	(approximately	100W)	than	the	average	response.	
	
The	30W	average	response	per	hour	provided	by	households	during	events	equates	to	
approximately	3.5%	of	the	average	winter	peak	household	load	(Carmichael	et	al,	2014).	
This	is	considerably	less	than	the	mean	response	of	100W	provided	by	households	on	the	
Low	Carbon	London	trial,	which	incentivised	response	using	dynamic	pricing	(ibid).	
However,	although	the	absence	of	financial	incentives	may	have	played	a	role	in	this	
difference,	other	contextual	differences	between	the	trials	are	noteworthy.	First,	the	
frequency	of	events	was	greater	–	just	under	four	per	week	(3.73)	–	than	the	maximum	of	
three	events	which	were	permitted	per	week	on	the	Low	Carbon	London	trial	(ibid);	a	
smaller	response	might	be	expected	when	participants	are	asked	to	respond	more	
frequently.	As	one	of	the	participants	subsequently	interviewed	explained:	“There	was	a	
phase	when	you	were	sending	a	lot	of	alerts	very	frequently	one	after	another,	and	after	
that	when	you	slowed	it	down	again	I	was	fatigued,	–		I	mean,	still	fatigued	even	though	you	
had	slowed	it	down	again.”	(Participant	23)		
	
Another	factor	that	may	help	to	explain	the	greater	response	on	the	Low	Carbon	London	
trial	is	that	participants	also	received	event	notifications	on	their	in-home	displays.	Studies	
have	shown	that	response	on	dynamic	DSR	programmes	is	usually	greater	when	participants	
are	notified	of	events	via	a	combination	of	text,	phone	and	in-home	displays	(VaasaETT,	
2011).	Several	participants	who	were	interviewed	for	the	current	study	also	suggested	that	
notifications	on	their	in-home	displays	would	have	facilitated	response.	
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Statistical	analysis	on	event	response		
	
Statistical	tests	were	carried	out	on	the	data	to	examine	whether	the	changes	in	demand	
during	the	events	were	statistically	significant.	The	combined	event	consumption	of	all	
households	(CEC)	was	greater	than	the	combined	reference	consumption	of	all	households	
(CRC)	for	19	of	the	24	turn-up	events	(see	Table	5).	Similarly,	the	combined	event	
consumption	of	all	households	(CEC)	was	lower	than	the	combined	reference	consumption	
of	all	households	(CRC)	for	14	of	the	16	turn-down	events.	Paired	samples	t-tests	were	
carried	out	on	the	reference	consumption	and	event	consumption	values	of	all	households	
for	each	event	to	determine	whether	the	changes	in	electricity	demand	during	the	events	
were	statistically	significant.	For	events	which	asked	participating	households	to	reduce	
(increase)	consumption,	the	hypothesis	tested	was	that	households	would	reduce	(increase)	
consumption	during	the	events	relative	to	their	corresponding	reference	consumption	
value.		
	
The	tests	revealed	statistical	significance	(P=<0.05)	for	four	of	the	turn-up	events	
(representing	17%	of	these	events)	and	for	six	of	the	turn-down	events	(representing	38%	of	
these	events).	A	further	four	turn-down	events	(representing	25%	of	these	events)	were	
significant	at	the	10%	significance	value	(these	all	had	P	values	<0.065).	The	mean	difference	
between	event	consumption	and	reference	consumption	values	is	reported	for	each	event	
in	Tables	4	and	5,	along	with	the	95%	confidence	intervals	and	significance	values.	
	
Since	not	all	of	the	events	were	statistically	significant,	an	additional	paired	samples	t-test	
was	performed	–	this	time	on	all	40	events.	The	null	hypothesis	for	the	test	was	that	the	
combined	event	consumption	(CEC)	of	the	households	during	the	events	was	not	
significantly	different	from	the	combined	reference	consumption	(CRC)	during	events.	
Before	proceeding	with	the	test,	the	data	was	transformed	to	enable	both	turn-up	and	turn-
down	events	to	be	tested.	The	transformation	meant	that	when	the	households	reduced	
demand	during	turn-down	events,	this	would	be	treated	as	a	positive	response.		
	
The	mean	combined	reference	consumption	for	the	events	was	102.75	kWh	and	the	mean	
combined	event	consumption	was	110.13	kWh.	The	difference	between	the	sample	mean	
combined	reference	value	and	the	mean	value	for	events	was	7.38	kWh,	with	a	95%	
confidence	interval	from	2.33	kWh	to	12.43	kWh;	the	t	test	statistic	was	2.957,	with	39	
degrees	of	freedom	and	an	associated	p-value	of	0.005.	As	such,	the	null	hypothesis	was	
strongly	rejected:	the	combined	electricity	consumption	of	the	trial	households	during	events	
was	statistically	different	from	their	consumption	during	the	reference	periods.	
	



	
 Table 4: Events which asked participants to reduce electricity consumption 

Event Date Day Event time Hours CRC 
(kwh) 

CEC 
(kwh) 

Difference 
(kwh) 

Percentage 
consumption 
change (%) 

Mean 
difference
per 
household 

95% confidence 
interval of the 
difference 

Sig. (1-
tailed) 

Lower Upper 
1 23.6.15 Tue 5pm-10pm 5 118.01 98.19 -19.82 -16.79 -.48349 -.84602 -.12095  .005 
2 25.6.15 Thu  7am-10am 3 57.54 52.32 -5.22 -9.07 -.12147 -.25060 .00766   .032 
5 29.6.15 Mon  6am-9am 3 50.46 41.44 -9.02 -17.87 -.21469 -.36155 -.06783   .002 
7 3.7.15 Fri  7am-11am 4 75.65 59.63 -16.02 -21.18 -.37249 -.57773 -.16724   .000 
9 5.7.15 Sun 6am–9am 3 42.98 39.57 -3.41 -7.93 -.07942 -.17487 .01604   .050 
12 9.7.15 Thu 4pm-10pm 6 121.03 120.41 -0.51 -0.62 -.01483 -.36550 .33583   .466 
16 19.7.15 Sun 9pm-12am 3 54.44 48.96 -5.48 -10.07 -.13714 -.30224 .02797  .050 
18 22.7.15 Wed 8am-10am 2 34.82 32.09 -2.73 -7.84 -.06827 -.27928 .14273   .258 
20* 24.7.15 Fri 7am-2pm 7 122.60 133.22 +10.62 +8.66 .26540 -.24007 .77087   .853 
24 31.7.15 Fri 1am-8am 7 76.79 63.84 -12.95 -16.86 -.32379 -.52190 -.12568  .001 
26 7.8.15 Fri 6am-12am 18 324.69 260.34 -64.35 -19.82 -1.60887 -2.47494 -.74281   .000 
28 11.8.15 Tue  4pm-10pm 6 146.04 125.5 -20.54 -14.06 -.46693 -1.06357 .12970   .061 
30 15.8.15 Sat  4pm-12am 8 165.50 153.07 -12.43 -7.51 -.28898 -.80344 .22549   .131 
31 17.8.15 Mon 6am-12am 18 341.64 308.67 -32.97 -9.65 -.76681 -1.69698 .16335   .052 
37 28.8.15 Fri 6am-10am 4 72.40 65.97 -6.43 -8.88 -.14944 -.40335 .10447  .121 
38* 29.8.15 Sat 7pm-12am 5 102.08 113.76 +11.68 +11.44 .26539 -.13607 .66685   .905 

*During these events the combined event consumption of all households (CEC) was larger than the combined event consumption of all households (CRC) despite the event calling for 
reduced consumption. 
	
	
	
	
	
	
	



Table 5: Events which asked participants to increase electricity consumption 
Event Date Day Event time Hours CRC 

(kwh) 
CEC 
(kwh) 

Difference 
(kwh) 

Percentage 
consumption 
change (%) 

Mean 
difference
per 
household 

95% confidence 
interval of the 
difference 

Sig. (1-
tailed) 

Lower Upper 
3 26.6.15 Fri 8pm-10pm 2 47.58 58.53 +10.95 +23.01 .26074 -.02855 .55003 .038 
4 28.6.15 Sun 7am-12pm 5 89.09 104.63 +15.54 +17.46 .37907 -.22859 .98674 .107 
6 1.7.15 Wed  10am-3pm 5 74.97 85.28 +10.31 +13.75 .23986 -.10781 .58753 .085 
8 4.7.15 Sat 1am-7am 6 59.67 67.03 +7.36 +12.33 .17531 -.08912 .43974   .094 
10 6.7.17 Mon 1pm-4pm 3 46.83 60.25 +13.42 +28.66 .31212 .00034 .62389 .025 
11 7.7.15 Tue 8pm-12am 4 80.68 89.52 +8.84 +10.96 .21057 -.08876 .50990 .081 
13 11.7.15 Sat 6pm-11pm 5 105.49 108.69 +3.2 +3.03 .07610 -.39211 .54430 .372 
14 16.7.15 Thu 8pm-12am 4 74.87 84.80 +9.93 +13.26 .24216 -.02167 .50599 .035 
15* 17.7.15 Fri 9am-4pm 7 111.92 99.55 -12.37 -11.05 -.30938 -.65187 .03312 .963 
17 21.7.15 Tue 10am-3pm 5 81.93 94.30 +12.37 +15.10 .30166 -.29134 .89466 .155 
19 23.7.15 Thu 9am-4pm 7 104.43 115.18 +10.75 +10.29 .26867 -.21510 .75245 .134 
21* 25.7.15 Sat 7am-2pm 7 125.37 117.18 -8.19 -6.53 -.21563 -.66137 .23010 .834 
22 27.7.15 Mon  9am-3pm 6 94.27 101.66 +7.39 +7.84 .19442 -.26776 .65660 .200 
23 29.7.15 Wed 10am-3pm 5 71.58 78.72 +7.14 +9.97 .18310 -.22418 .59039 .184 
25* 4.8.15 Tue 3pm-8pm 5 105.58 93.28 -12.3 -11.65 -.30757 -.73928 .12413   .921 
27 8.8.15 Sat 4pm-12am 8 156.16 161.72 +5.56 +3.56 .13895 -.76893 1.0468 .379 
29 13.8.15 Thu 8pm-12am 4 78.83 85.9 +7.07 +8.97 .16075 -.14393 .46543   .146 
32 19.8.15 Wed 7pm-12am 5 102.76 106.97 +4.21 +4.10 .10261 -.45454 .65976 .356 
33 20.8.15 Thu 8pm-4am 8 113.85 119.33 +5.48 +4.81 .13036 -.23430 .49501 .237 
34* 23.8.15 Sun 10am-9pm 11 268.65 224.08 -44.57 -16.59 -1.01289 -1.91319 -.11258 .986 
35 26.8.15 Wed 9am-4pm 7 107.82 138.56 +30.74 +28.50 .71485 -.001889 1.43159 .025 
36 27.8.15 Thu 9am-4pm 7 108.32 115.93 +7.61 +7.02 .17707 - .20598  .56012 .178 
39 3.9.15 Thu 10am-4pm 6 93.09 100.97 +7.88 +8.46 .17501 -.35907 .70909 .256 
40* 5.9.15 Sat 9am-1pm 4 89.445 86.68 -2.76 -3.08 -.06144 -.40240  .27951 .641 

* During these events the combined event consumption of all households (CEC) was smaller than the combined event consumption of all households (CRC) despite the event calling for 
increased consumption 



	
6. Discussion		

	
A	key	finding	of	this	study	was	that	the	majority	of	households	responded	to	the	
dynamic	DSR	events	by	making	changes	to	consumption	patterns.	Overall,	the	
households	consumed	9.9%	less	electricity	on	average	during	turn-down	events	and	
4.4%	more	electricity	on	average	during	turn-up	events.	This	response	is	significant	
in	light	of	the	fact	that	participants	received	no	financial	incentives	for	their	
response.	It	suggests	that	initiatives	such	as	that	explored	in	this	trial	could	
supplement	traditional	financial	DSR	programmes:	these	programmes	could	
represent	an	additional	DSR	resource	by	enabling	a	larger	number	of	consumers	to	
participate	in	DSR	than	would	be	the	case	if	only	financial	programmes	were	offered.	
	
However,	although	suppliers	might	have	an	interest	in	developing	non-financial	DSR	
programmes	to	benefit	from	reduced	wholesale	costs	(UK	Power	Networks,	2014),	it	
is	moot	whether	consumers	would	be	prepared	to	participate	in	such	schemes	if	
they	were	aware	that	suppliers	would	benefit	financially	from	their	response.	This	
issue	was	raised	in	one	of	the	post-trial	interviews,	with	the	participant	suggesting	
that	he	would	not	be	prepared	to	take	part	in	non-financial	DSR	programmes	if	they	
were	offered	by	suppliers	for	precisely	this	reason.	This	echoes	the	findings	of	
Buchanan	et	al	(2016):	residential	consumers	in	that	study	suggested	that	since	their	
engagement	yielded	financial	benefits	for	the	grid	and	suppliers,	they	should	share	
in	those	benefits.	
	
As	such,	it	is	important	to	consider	which	organisations	would	be	best	placed	to	
instigate	non-financial	DSR	programmes.	It	is	perhaps	new	entrants	and	non-
conventional	operators	in	the	energy	system	–	operating	under	what	Ofgem	refers	
to	as	‘non-traditional	business	models’	–	that	might	be	the	most	likely	candidates	
(Ofgem,	2015).	Examples	would	include	the	non-profit	supply	companies	established	
by	Bristol	and	Nottingham	councils:	Bristol	Energy	and	Robin	Hood	Energy,	
respectively.	Such	organisations	may	be	a	better	fit	for	non-financial	DSR	
programmes	than	conventional	suppliers,	since	consumers	are	more	likely	to	engage	
with	non-financial	DSR	programmes	if	these	are	offered	by	non-profit	players.	
Similarly,	distribution	network	operators	might	have	an	interest	in	developing	non-
financial	DSR	programmes	to	defer	the	need	for	reinforcement	work	on	the	
distribution	network	or	to	address	capacity	shortfalls	in	particular	network	areas	(UK	
Power	Networks,	2014).	One	distribution	network	operator,	Electricity	North	West,	
has	already	run	such	a	programme:	the	‘Power	Saver	Challenge’.	This	involved	a	
competition	between	households	in	different	districts	in	Stockport	to	use	less	
electricity	between	4:00pm	and	8:00pm	in	Winter	2015	(Power	Saver	Challenge,	
2015).			
	
Finally,	non-financial	DSR	programmes	could	also	provide	a	resource	for	managing	
electricity	flows	in	network	areas	where	there	are	high	levels	of	local	generation.	As	
highlighted	by	Work	Steam	6	(2014),	community	schemes	are	one	way	to	encourage	
the	use	of	electricity	proximal	to	its	generation,	thereby	avoiding	thermal	or	voltage	
issues.	The	report	suggests	that	instead	of	financially	rewarding	individual	customers	



for	responding,	benefits	could	“be	directed	towards	sources	of	value	to	the	whole	
community	affected	by	the	network	constraint	and	prepared	to	provide	an	
appropriate	response”	(ibid,	18)	
	
Limitations		
	
There	are	several	important	limitations	to	this	study.	The	first	concerns	the	small	
sample	size	(n=46);	it	is	questionable	whether	scaling	up	such	a	programme	would	
lead	to	corresponding	levels	of	response	(Pollitt	&	Shaorshadze,	2011).	That	scaling	
up	non-financial	DSR	programmes	might	lead	to	reduced	per	capita	response	is	
supported	by	a	meta-analysis	of	DSR	programmes	by	VaasaETT	(2011),	which	found	
that	response	to	DSR	tariffs	was	normally	lower	on	programmes	with	larger	numbers	
of	participants.		
	
The	second	relates	to	the	fact	that	the	trial	ran	for	four	months	only.	This	raises	two	
questions.	First,	although	participants	responded	to	the	events	by	making	
consumption	changes,	it	is	not	clear	whether	this	response	would	have	been	
sustained	over	a	longer	timeframe;	some	experts	suggest	that	four	months	is	not	
long	enough	to	reach	firm	conclusions	in	this	regard	(Van	Dam	et	al,	2010).	Had	the	
trial	lasted	longer,	‘response	fatigue’	(Kim	and	Shcherbakova,	2013)	might	have	led	
some	participants	to	respond	less	or	cease	responding	altogether.	On	the	other	
hand,	some	argue	that	the	response	of	participants	on	DSR	programmes	can	actually	
increase	over	time	as	new	ways	of	responding	are	embedded	in	everyday	practices	
(Sexton	et	al,	1987;	Filippini,	2011;	Thorsnes,	2012;	Breukers	&	Mourik,	2013).		
	
Second,	patterns	of	electricity	demand	vary	at	different	times	of	the	year,	so	the	
study	does	not	reveal	whether	response	at	other	times	of	year	–	for	example,	in	
winter	–	would	be	higher	or	lower	(Hu	et	al,	2015).	In	this	regard,	however,	evidence	
from	other	DSR	studies	suggests	that	the	response	could	well	have	been	greater	had	
the	study	taken	place	in	winter.	Both	VaasaETT	(2011)	and	the	Low	Carbon	London	
Dynamic	Time	of	Use	Trial	(Schofield	et	al,	2014)	found	that	response	to	non-
automated	dynamic	DSR	was	greater	during	winter	than	at	other	times	of	the	year.		
The	post-trial	interviews	also	support	this	conclusion:	several	participants	
commented	that	they	would	have	been	able	to	respond	more	in	winter	owing	to	
their	greater	use	of	electric	heating	and	electric	cooking	appliances	at	this	time	of	
year.	
	
Finally,	response	may	have	been	biased	because	participants	were	aware	that	they	
were	taking	part	in	an	experiment	–	sometimes	referred	to	as	the	‘Hawthorne	effect’	
(Benson,	2000).	This	effect	is	often	most	noticeable	in	shorter	experiments,	as	
participants	have	less	time	to	grow	accustomed	to	the	intervention,	and	must	be	
factored	in	to	avoid	overestimating	the	impact	of	interventions	(Darby,	2011).	
	
The	considerations	discussed	above	suggest	it	would	be	imprudent	to	assume	that	
the	response	seen	on	this	trial	would	be	replicated	by	future	programmes	taking	
place	in	different	contexts.	Nevertheless,	the	fact	that	many	of	the	participating	
households	responded	to	the	events	by	altering	demand	patterns	is	encouraging	and	



suggests	that	further	studies	to	explore	consumer	response	to	non-financial	DSR	
programmes	would	be	valuable.	These	should	ideally	involve	larger	samples	and	be	
carried	out	over	longer	timeframes;	this	would	make	it	possible	to	determine	
whether	the	response	seen	in	this	study	could	be	replicated	across	a	larger	cohort	of	
households	and	whether	response	would	be	sustained	over	time.		
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