

Discussion on Getting Global Agreements on Climate Issues; Problems and Prospects

British Institute of Energy Economics Royal Society, London Wednesday 24th 2013

Benito Mueller and Lavan Mahadeva

SO2 versus CO2

- Acid rain legislation has been successful (at least in the US). Emissions reduced at a fraction of the cost initial projected.
- Acid raid is a national externality

- Global warming legislation has not
- Global warming is international

The international dimension must, I think, be the main reason why we have failed to reduce global warming emissions

Overview

- Motivation: Support Climate Change actions by estimating of the respective capability to pay of nations
- Focus: GDP, GDP per capita and poverty (energy and climate change does not matter here)
- Key question: What is the fair capability to pay for each country?
- Being as objective as possible, independent of responsibility and simple as possible

Motivation

Capability will be a crucial component of any Climate Change solution:

- It is stipulated in Article 3.1 of UN Framework Convention on Climate Change
- Even those who seem to favour price-based instruments agree that capability to pay should matter (Nordhaus, Sachs, Kim)
- ...but no one has yet formalized this (with one exception)
- ... and existing categorizations (LDCs, HDI) not fit for purpose.

- Fits some concept of fairness;
- is based on comparable available data;
- is uncontroversial in its parameterization;
- takes the world as it is;
- and is unit and aggregation invariant.

Our proposal

Capability should be a progressive function of <u>economic size</u>, with exemptions for <u>poverty</u>

or ... Capability=Size * f(size) - Exemptions

where lower case is in per capita terms

Divide both sides by population

implies...capability=size *f(size)-exemptions

In terms of shares of total \$ impact

- ECS=Actual Cost Share- Benchmark Cost Share
- ECS(+)=Sum of positive ECS is a measure of the *level of inequity* of the actual distribution, relative to that benchmark
- If ECS(+) is zero, actual distribution is fair
- If ECS(+) is one, then extremely unfair
- On the DARA data, we find a level of inequity of 63 per cent

Conclusion

• The design of any international climate finance scheme should take into account GDP, GDP per head and poverty.

- The idea is drawn from income tax.
- Key features
- 1. Tax is a function of the current earnings
- 2. Progressive (the more you earn, the higher your average tax rate)
- 3. Thresholds/exemptions for other factors
- 4. Income tax though not fully optimal, has been pervasive worldwide since the 18th Century
- It is seen as fair (Robespierre).

Key elements to success of design

- •Estimates of progressivity; f(size)
- Size of poverty exemption

Less critical to success of the design

•Particular measure of economic size- for the moment, we assume this is GDP at PPP \$s (2009)

Progressivity

- The concept of vertical equity is the guiding principle of income tax within a country
- Those who earn more pay a higher share of taxes of their total income

Hence share=f(gdp)=(gdp/gdp_world)^(delta)

- If delta=0, capability=gdp, constant tax per unit income,
- if delta<0 regressive and if delta>0, progressive

We look at the estimates of delta implicit in each countries income distribution, The median value of 0.5, and use that.

Net Capabilities

- While many exemptions can be argued for, we think that only poverty (numbers and intensity) should matter
- This is in keeping with the principle of keeping with "taking the world as it is"- you don't assume poverty can be alleviated easily or try to alleviate poverty with this scheme

How do we formalise this?

- As **Exemptions =Pi* No of Poor * Their Poverty Intensity**
- Where the number of poor and poverty intensity are as measured by the Oxford University International Development/UN, and takes account of many factors (not just \$2 per day)
- And where Pi is a parameter to be determined

The Tao of Pi

Capability=GDP*(gdp/gdp_world)^delta-Pi*No. Poor*Poverty intensity

For each country, Pi_dot is the value of Pi at which capability is zero

 Pi_dot=(GDP/(No. Poor*Poverty intensity)) *(gdp/gdp_world)^delta

If Pi is below the Pi_dot for that country, then that country would have positive capability.

Now choose Pi such that most LDCs are exempt...

Invariance

Capability=GDP*(gdp/gdp_world)^delta-Pi*No. Poor*Poverty intensity

- Capability invariant to change of units (£s, \$s, shekels)- multiply Pi and GDP by the same unit
- The ratio of capabilities of any two countries independent of what happens to other countries

In more detail

Poverty intensity of GDP

Spare slides

Analysis of the choice of base FOR ENERGY.. though not crucial to our design STUDIES

Name	Advantages	Disadvantages
GDP (PPP \$s)	Easy to measure	
National Wealth	The broadest measure of lifetime resources	Very difficult to measure Controversial parameters Not pay as you go
Consumption	Closest to utilitarian Equal sacrifice&progressive Hobbes vs idleness Matches PPP deflator	Can be difficult to measure (durables, housing services)
GNI	Easy to measure Adjusts for non-residency	Is non-residency always relevant?
NDP/NNI	Takes account of capital consumption	Difficult to measure Controversy over scope
GDP (current \$)	Easy to measure	Only relevant if opportunity cost is in \$s

Relative consumption per head

- BENITO

Developmental Headroom

- The gap between Pi and Pi_dot- closed by growth

