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Introduction 
Achieving a sustainable energy economy is 

highly dependent on decarbonising the 

electricity sector. The power network as the 

core of industry requires a transformation 

through expansion, adoption of new 

technologies etc. Such transformation can 

only be reached through substantial 

investments. The incentive regulation links 

investment with static cost efficiency of the 

firm in order to deter the possible 

overcapitalisation. This measure of cost 

efficiency is only appropriate for short run as it 

capture the firm’s performance in a snapshot 

towards its long run equilibrium. Power 

network companies are working in a dynamic 

environment and invest in order to realise their 

long term objectives.   The current incentive 

regulation incentivises investment through 

return on capital and at the same time 

accentuates the short run cost efficiency. As 

the investment is a long run objective and 

static efficiency is a short run concept these 

instruments send inconsistent signals to the 

regulated firm. This potentially limits the firms’ 

ability for investment and innovation. 

Methodology 

Following Coelli and Perelman  ( 1996) we 

define an input distance function as in (1). 

 𝐷𝐼 𝑥, 𝑦, 𝑡 = 𝑚𝑎𝑥 𝛾:
𝑥

𝛾
∈ 𝐿(𝑦)             (1) 

where 𝐿(𝑦) represents the input vectors 𝑥 that 

can produce the output vector 𝑦 at time 𝑡 and 

𝛾 indicates the proportional reduction in input 

vector. If 𝑥 ∈ 𝐿 𝑦  then 𝐷𝐼 ≥ 1  however, 

𝐷𝐼 = 1 if 𝑥 is on the frontier of input set. The 

technical efficiency is   𝑇𝐸𝑖𝑡 = 1/𝐷
𝐼(𝑥, 𝑦, 𝑡) . 

Taking the logarithm of both sides and 

imposing the homogeneity of degree one by 

deflating 𝐾 − 1 inputs by 𝐾th input will lead to 

an econometric version of this relationship as 

in (2). 

                                

− 𝑙𝑜𝑔𝑥𝐾𝑖𝑡 = 𝑙𝑜𝑔𝐷𝑖𝑡
𝐼 𝑥𝑘𝑖𝑡

𝑥𝐾𝑖𝑡
, 𝑦𝑚𝑖𝑡, 𝑡 + 𝑣𝑖𝑡 +

log(𝑇𝐸𝑖𝑡)     

                                         (2) 

where  𝑣𝑖𝑡  is a normally distributed 

idiosyncratic error term. 

The logarithm of distance function can be 

written in terms of an estimable linear function 

of 𝒙𝑖𝑡 and a vector its coefficients 𝜷 as in (3). 

       𝑦𝑖𝑡 = 𝒙𝑖𝑡
′ 𝜷+ 𝑣𝑖𝑡 + log(𝑇𝐸𝑖𝑡)             (3)  

As in Emvalomatis et al. (2011) we assume 

the following autoregressive process for the 

efficiency by making non-linear transformation 

of inefficiency as in (4), (5) and (6). 

 

     𝑠𝑖𝑡 = log(
1−𝑇𝐸𝑖𝑡

𝑇𝐸𝑖𝑡
)                    (4)                                                

     𝑠𝑖𝑡 = 𝛿 + 𝛾𝑠𝑖𝑡−1 + 𝑢𝑖𝑡             (5)     

     𝑠𝑖1 = 𝜇1 + 𝑢𝑖1                        (6) 

 

      𝑢𝑖𝑡~𝑁(0, 𝜍𝑢
2)    and   𝑢𝑖1~𝑁(0, 𝜍𝑢1

2 ) 

    

where 𝑠𝑖𝑡 the ratio of inefficiency to efficiency and 

𝛾 is an elasticity that measures the percentage 

change in inefficiency to efficiency that is 

transferred from a period to the next. Equation (6) 

initialises the stochastic process and assumes 

stationarity. Under this condition the two additional 

parameters can be obtained by (7) and (8).  

                    𝜇1 =
𝛿

1−𝜌
                (7) 

                   𝜍𝑢1 =
𝜎𝑢1
2

1−𝜌2
              (8) 

 

If the process is not stationary then the expected 

value of the firm efficiency over time goes to unity 

or zero. In a similar manner, the expected value of 

𝑠𝑖𝑡 goes to positive and negative infinity. 

We need to estimate the parameters of hidden 

state model (5) and measurement equation (9) 

with only observed data in (9). 

        

     𝑦𝑖𝑡 = 𝒙𝑖𝑡
′ 𝜷+ 𝑣𝑖𝑡 + log 𝑇𝐸𝑖𝑡 + 𝜔𝑖   (9) 

                          𝜔𝑖~𝑁(0, 𝜍𝑖
2) 

 

Thus, assuming 𝑠𝑖 is the of 𝑇 × 1 vector of the 

latent state variable for firm 𝑖, we set up the 

likelihood function for the vector of all 

parameters,𝜽 = 𝜷, 𝜍𝑣 , 𝛿, 𝜌, 𝜍𝑢 , 𝜍𝑤  
′as follows: 

 
𝑝 𝒚, *𝜔𝑖 , *𝑠𝑖+ 𝜽,𝑿) =  𝑝 𝒚 *𝜔𝑖 , *𝑠𝑖+, 𝛽, 𝜍𝑣, 𝑿) × 𝑝 *𝑠𝑖+ , 𝛿, 𝜌, 𝜍𝑢 

=
1

2𝜋𝜍𝑣2
𝑁𝑇
2

𝑒𝑥𝑝 −
  (𝑦𝑖𝑡 − 𝜔𝑖 − 𝑿𝑖𝑡

′ 𝛽 − 𝑙𝑜𝑔𝑇𝐸𝑖𝑡)
2𝑇−1

𝑡=0
𝑁
𝑖=1

2𝜍𝑢
2

×
1

2𝜋𝜍𝑢02
𝑁
2

𝑒𝑥𝑝 −
 𝑠𝑖0 − 𝛿0

2𝑁
𝑖=1

2𝜍𝑢0
2

×
1

2𝜋𝜍𝑢2
𝑁 𝑇−1

2

𝑒𝑥𝑝 −
  𝑠𝑖𝑡 − 𝛿 − 𝜌𝑠𝑖,𝑡−1

2𝑇−1
𝑡=0

𝑁
𝑖=1

2𝜍𝑢
2

×
1

2𝜋𝜍𝜔2
𝑁
2

𝑒𝑥𝑝 −
 𝜔𝑖

2𝑁
𝑖=1

2𝜍𝜔
2  

                                              (10) 

                  

Which 𝒚 and 𝑿 represents the vector and matrix of 

independent and dependent variable respectively 

and 𝛿0 and 𝜍𝑢0
2  are the mean and variance of  𝑠𝑖1 

in equation (6). The last term in likelihood function 

captures the heterogeneity effects. 

The joint posterior density of the parameters, firms’ 

effects and latent state using Bayesian rule can be 

obtained by (11).  
𝜋 𝜽, *𝜔𝑖 , *𝑠𝑖+  𝑦, 𝑋) ∝ 𝑝 𝑦, *𝜔𝑖 , *𝑠𝑖+ 𝜃, 𝑋) × 𝑃(𝜽)    (11) 

 

 We use social cost as single input (𝑆𝑜𝑐) and 

number of customer 𝑁𝐶 , length of network 𝐿𝑁  , 

distributed energy (𝐷𝐸) as outputs. We specify the 

following specification to estimate dynamic 

efficiency. 

 

− log 𝑆𝑜𝑐
= 𝛽0 + 𝛽1 log 𝑁𝐶 + 𝛽2 log 𝐿𝑁 + 𝛽3 log 𝐷𝐸

+
1

2
𝛽4𝑙𝑜𝑔

2 𝑁𝐶 +
1

2
𝛽5𝑙𝑜𝑔

2 𝐿𝑁 +
1

2
𝛽6log

2 𝐷𝐸

+ 𝛽7 log 𝑁𝐶 log 𝐿𝑁 + 𝛽8 log 𝑁𝐶 log 𝐷𝐸

+ 𝛽9 log 𝐿𝑁 log 𝐷𝐸 + 𝜔𝑖 + 𝜉1𝑡 +
1

2
𝜉2𝑡

2 + 𝜈𝑖𝑡

− 𝑙𝑜𝑔𝑇𝐸𝑖𝑡                                                      (12)    
 

Social costs include the cost of negative 

externalities. We use a dataset comprising a 

balanced panel of 128 Norwegian distribution 

companies from 2004 to 2010. 

 
 

 

 

 

                Table1: Estimation results  

 

 

 

 

 

 

 

 

 

 

 

Conclusion 
The results of estimation show the 𝜌 is less 

than unity (77 and 70% in simple random 

effect and correlated random effect 

respectively) which implies that the sector is 

approaching towards the long run equilibrium 

rapidly. The expected value of long run 

efficiency is also 76 and 82% in each 

estimation which suggests that the 

persistence of inefficiency is inevitable. This 

also complies with the adjustment cost theory 

of investments that says it is to the benefit of 

the firm to remain partially inefficient in 

presence of adjustment cost. The incentive 

regulation however, emphasises the static 

cost efficiency. The firms’ investments are 

encumbered indirectly such that deviation 

from the sector best practice (measured by 

static efficiency) in process of benchmarking 

and revenue setting results in partial 

disallowance of investment costs. This means 

that the current form of incentive regulation 

adopted in Norway as well as many other 

countries is inadequate to deal with 

investment and innovation.  
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         Simple random effect            Correlated random 

    Variable 

 
       Mean  Std. Dev.                  Mean             Std. Dev. 

𝛽0 0.34205 (0.053887) 0.23665 (0.051422) 

𝛽1 0.28762 (0.046698) 0.11701 (0.104343) 

𝛽2 0.36065 (0.029827) 0.21606 (0.093205) 

𝛽3 0.24970 (0.036858) 0.11259 (0.056200) 

𝛽4 0.09727 (0.038841) 0.03807 (0.070256) 

𝛽5 -0.06312 (0.100805) -0.28806 (0.182883) 

𝛽6 -0.06084 (0.053950) -0.21201 (0.071650) 

𝛽7  -0.02394 (0.072697) 0.01034 (0.125549) 

𝛽8 -0.00349 (0.030478) -0.01356 (0.046992) 

𝛽9  0.04121 (0.052897) 0.20701 (0.090193) 

𝜉1 0.00007 (0.000210) 0.03050 (0.003544) 

𝜉2 0.00000 (0.000000) -0.00002 (0.000006) 

𝜍𝑣  

 

0.03418 (0.003877) 0.03899 (0.003730) 

𝛿 

 

0.26944 (0.057608) 0.46890 (0.106928) 

𝜌 0.76600 (0.038328) 0.69766 (0.064994) 

𝜍𝑢  0.24952 (0.027429) 0.28747 (0.036909) 

𝜍𝜔  

 

0.12275 (0.010901) 0.11816 (0.009491) 

𝐿𝑜𝑛𝑔 𝑟𝑢𝑛 𝑇𝐸 
 

0.75832  0.82424  

𝐿𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

 

1071.00  1163.80  

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
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