British Institute of Energy Economics 2012 19-20 September 2012

#### Angus R Vantoch-Wood Associate Research Fellow/PhD Student University of Exeter

# Developments within the UK Wave Energy Sector

A.Vantoch-Wood@Exeter.ac.uk



#### **Presentation Overview:**

- -The Research Problem(s)
- -This Research
- -Overview of Methodology
- -Findings
- -Discussion Section/Policy Implications



# **Research Problem- The Sector**

40 Years of research...5.6MW Operational (wave and tidal) It's just not happening...

-Clear technical challenges still exist but... -IP concerns can make developers reluctant to collaborate, limiting knowledge transfer and collaborative engagement (LCICG, 2012, POST, 2009, Winskel, M., 2006) -Interaction between universities and industry could be stronger (EPSRC, 2009 Renewables Advisory Board, 2008)



#### **Research Problem- Theory**

We just don't know if It's just not happening... -We know that networks are important to the innovation process but these relationships are hard to assess (non-codified) and difficult to map out. (Hekkert and Negro, 2009, OECD, 2005)

- There is a failure to recognise the importance of networks, especially in emerging industries where on average 2/3 of relationships are nonformal (Dosi *et al.*, 2002, Low and Abrahamson, 1997, Håkansson, 1990, Coleman, 1988)

#### **Research Goal:**

Gain a stronger understanding of activities occurring within the sector using:

-Framework of Bergek et al's Technological Innovation System (TIS)

-Application of network analysis, to create a 'map' of all interactions



# **Methodology: Hierarchy of TIS Indicators**

System 'Health' (1)

Functionality 'Health (8)'

Proxy Indicators (33 points)

Raw data(51 points)

i.e.

- Resource Mobilisation\*
- Knowledge Generation\*
- i.e.
- -Levels of HR Mobilisation\* -Public Research Spending\* i.e.
- Number of FTE Staff\*
- Number of FTE Students\*



\* within the wave energy sector

# Methodology: Network Analysis

Identify Initial Actors & System Boundaries

| Device<br>Developers &<br>Utilities (26) | Public Sector:<br>(7)             | Universities:<br>(14)        | Test Facilities:<br>(3) |
|------------------------------------------|-----------------------------------|------------------------------|-------------------------|
| Aquamarine Power                         | DECC                              | University of Exeter         | Wave Hub                |
| Pelamis Wave<br>Power Ltd                | Scottish Government               | University of<br>Plymouth    | EMEC                    |
| Checkmate Sea<br>Energy                  | Marine Scotland                   | University of<br>Edinburgh   | NaREC                   |
| Ocean Power<br>Technology                | Marine Management<br>Organisation | University of<br>Manchester  |                         |
| EDF Energy                               | Crown Estates*                    | Queens University<br>Belfast |                         |
| RWE NPower                               | Carbon Trust*                     | University of<br>Strathclyde |                         |

\* Non-public body working in public interest



# Methodology: Network Analysis

Build Weighted Asymmetric Network of Different Interaction Types (Multiplexity)

# Methodology: Network Analysis

**Build Weighted** Asymmetric Network of **Different Interaction** Types (Multiplexity) 'Snowballing' the Interview Process Until Full Network **Saturation** 

#### 65 System Actors, 234 Non-System (Total 299)

#### **Findings: Network Analysis**



# **Findings: Groups**

| Normalised for prominence.<br>(i.e. each receiver gets on<br>average:) |                       | Summated Knowledge Average Provision (Influence) |                    |            |                          |                     |                  |  |  |
|------------------------------------------------------------------------|-----------------------|--------------------------------------------------|--------------------|------------|--------------------------|---------------------|------------------|--|--|
|                                                                        |                       | Test Centre                                      | Utility<br>Company | University | Public<br>Sector<br>Body | Device<br>Developer | Other<br>Company |  |  |
| Summated Knowledge Average<br>Reception (Prominence)                   | Test Centre           | 8                                                | 5                  | 46         | 56.33                    | 19.7                | 38               |  |  |
|                                                                        | Utility Company       | 10.4                                             | 4.6                | 17.4       | 26.8                     | 11.8                | 8.8              |  |  |
|                                                                        | University            | 4.71                                             | 4.43               | 55.9       | 13.07                    | 12.1                | 21.6             |  |  |
|                                                                        | Public Sector<br>Body | 6.4                                              | 13.6               | 5.2        | 43.8                     | 21.2                | 9.2              |  |  |
|                                                                        | Device Developer      | 6.64                                             | 3.57               | 19.2       | 25.43                    | 0.43                | 22.4             |  |  |

# **Findings: Networks**

|                                    | Network Knowledge Types |                                |                               |                      |  |  |  |
|------------------------------------|-------------------------|--------------------------------|-------------------------------|----------------------|--|--|--|
|                                    | Sum.                    | Environmental                  | Market                        | Technical            |  |  |  |
| Primary<br>Influential<br>Actors   | Mixed                   | Public Sector<br>(Regulators)  | Public<br>Sector<br>(Funders) | Universities         |  |  |  |
| Secondary<br>Influential<br>Actors |                         | Environmental<br>Consultancies | Mixed                         | Device<br>Developers |  |  |  |



#### **Findings: Device Developers**



#### **Findings: Device Developers**

| TRL | YR   | 2005                                       | 2006  | 2007   | 2008   | 2009             | 2010     | 2011          | 2012              | 2013 | 2014 | 2015 |  |
|-----|------|--------------------------------------------|-------|--------|--------|------------------|----------|---------------|-------------------|------|------|------|--|
| 8>9 | GB   |                                            |       |        |        |                  |          |               |                   |      | MEAD |      |  |
|     | Scot |                                            |       |        |        |                  |          |               |                   | MRCF |      |      |  |
|     | GB   |                                            | MRDF  |        |        |                  |          |               |                   |      |      |      |  |
|     | GB   | CCL Exemption Cert.                        |       |        |        |                  |          |               |                   |      |      |      |  |
| 7>8 | Scot | 1 ROC                                      | /MWh  | RO Sco | t. MSO | RO Scot. 5 ROC/M |          |               |                   | /MWh | /MWh |      |  |
|     | Eng  | 1 ROC/MWh                                  |       |        |        | 2 ROC/MWh        |          |               | 5 ROC/MWh         |      |      |      |  |
|     | Scot |                                            |       |        |        |                  |          |               | The Saltire Prize |      |      |      |  |
| 6>7 | GB   |                                            |       |        |        | MRPF             |          |               |                   |      |      |      |  |
|     | Scot |                                            | WATES |        |        |                  | WATEDC   |               | WATERS            | S    |      |      |  |
|     |      |                                            |       |        |        |                  |          |               |                   |      |      |      |  |
| 5>6 |      |                                            |       |        |        |                  |          |               |                   |      |      |      |  |
|     | GB   |                                            |       |        |        |                  | g. (<> + | r Non Device) |                   |      |      |      |  |
|     | GD   |                                            |       |        |        |                  |          |               |                   |      |      |      |  |
| 3<4 | GB   | EU FP(6-8) Funding (<4 + Non Device)       |       |        |        |                  |          |               |                   |      |      |      |  |
|     | GB   | Research Council Funding (<4 + Non Device) |       |        |        |                  |          |               |                   |      |      |      |  |

# **Discussion Section: Findings**

#### -Levels of Interaction

- University⇔university technical network is strongest
- University device developer interaction is moderate
- Device developer ↔ device developer interaction is low however there is wide disparity between them
- -'Gating' of technology/location support
  - -Two UK devices have been supported to full scale.
  - WATES, WATERS (1 & 2) for Scottish deployment
  - This is creating a 'Matthew' Effect' for developers



# **Discussion Section: Problems**

# -Technology 'Bundling' of wave/tidal

-Tidal is some years ahead and has strong advantages (design convergence, 20-30% cheaper, potentially higher UK resource, predictability) -Collective support beneficial for communalised goods/problems)

# -A disaggregated UK funding community

- -10+ funding agencies for marine renewables
- -Varying motivations, (tech./employment/ infrastructure/carbon abatement...)
- -Lack of co-ordinated approach



# **Thank You For Listening**

#### Angus R Vantoch-Wood

A.Vantoch-Wood@Exeter.ac.uk Associate Research Fellow/PhD Student University of Exeter

Developments within the UK Wave Energy Sector

British Institute of Energy Economics

