

Priorities in Developing DECC's Evidence Base

Steven Fries, Chief Economist

BIEE 10th Academic Conference 17 September 2014

Overview

- **1** Current policy framework
- 2 Policy challenges ahead
- **3 DECC evidence priorities**

1 Current policy framework

- a Long-term decarbonisation goal and carbon budgets
- **b** Power sector decarbonisation
- c Renewable heat and building efficiency
- d Decarbonisation of road transport

Carbon Budgets shape the pathway to 2050; Carbon Plan sets out the Government's policy strategy

EMR and small-scale feed-in-tariffs aim to drive power sector decarbonisation while maintaining security of supply

Contracts for Difference:

Illustrative strike price

Ensuring security of supply: Derated capacity margin

Source: Ofgem, June 30 2014 Based on National Grid's Future Energy Scenarios

Deployment of cavity wall insulation

Source: Government's response to the Fifth Annual Progress Report of the CCC

Deployment of renewable heat

Source: DECC RHI Impact Assessment

1 Current policy framework

In transport, decarbonising through emission standards, bio-fuels and EV infrastructure support is key **Climate Change**

EU average new car and van emission standards to 2020 and then illustrative ranges

Source: DECC Carbon Plan

Department of Energy &

Projected ULEV car sales as a proportion of all car sales

Source: Department for Transport modelling

1 Current policy framework

2 Policy Challenges Ahead

- a Policies to deliver the 4th Carbon Budget building efficiency and low carbon heat
- **b** Allocation of LCF budget and next EMR delivery plan
- c EU 2030 framework and EU ETS reform
- d Setting the 5th Carbon Budget

Pathways to meet the 4th Carbon Budget level (1,950 MtCO₂e) as set out in the Government's Carbon Plan **Climate Change**

Non-traded GHG emissions: scenarios to meet the 4th Carbon Budget, 2023-27

Source: DECC, Carbon Plan (2011)

- Four scenarios in the non-traded sector complemented with two in the traded sector •
- Bottom-up approach adopted by picking measures in each sector that aim to balance • static and dynamic cost effectiveness, feasibility and deliverability, and public acceptance

Department of Energy &

Next EMR delivery plan and LCF Budget must balance static and dynamic efficiency goals

Levy control framework for the first EMR delivery plan period according to NAO

*Based on projects' full capacity estimates and target commissioning date

- Least cost deployment of renewables to meet 2020 target, which means around 30% share of renewables in power generation
- Support for scalable low carbon technologies such as offshore wind, new nuclear and CCS that can make a substantial contribution to long-term decarbonisation of the power sector to reduce costs in future

EU 2030 Framework and reform of the EU ETS will have a significant impact on traded sector emissions **Climate Change**

Department of Energy &

2 Future policy challenges

MARKAL-based emissions trajectory to 2050 for the 4th Carbon Budget

- Insights into dynamic impacts of abatement though MARKAL modelling.
- Plus bottom-up modelling based on detailed analysis of scope of technology roll-out.

3 DECC evidence priorities

- a Energy use and efficiency in homes and businesses
- **b** Understanding how businesses make investment decisions
- c Innovation and cost reduction for low carbon technologies and mitigation of long run technology risks
- d Optimising within and across energy systems
- e Broader macroeconomic and distributional impacts of change

Evaluation of key policies

• Energy Company Obligation and Green Deal, Smart Metering, and Domestic Renewable Heat Incentive

Real world evidence on measures, technologies and their impact

- How technologies and measures perform in the real world rather than lab, such as field study of solid wall insulation
- How people use existing heating controls and other tools
- Trails on smart meters, new tariffs and autonomous home control systems
- Supply chain capabilities to install measures and technologies

Improved understanding via energy models

- National household model open source micro-simulation model
- Building Research Establishment Domestic Energy Models, including the Standard Assessment Procedure used for Energy Performance Certificates

Business energy use and efficiency – what policies work, how of Energy & Climate Change

Evaluation of key policies

- Non-domestic Renewable Heat Incentive, Carbon Reduction Commitment Energy Efficiency Scheme and Energy Saving Opportunity Scheme (energy audits)
- Electricity Demand Reduction pilot scheme

In situ performance of key low carbon technologies and controls

• Priority technologies are large-scale heat pumps, biomass boilers, heating controls and operation of space heating and cooling in non-domestic buildings

Potential for energy efficiency and low carbon heat

- Major study to update the evidence base on energy use in non-domestic buildings across a ranges of sectors (offices, retail) as well as abatement potential
- Joint BIS-DECC study to develop evidenced-based options to decarbonise the 8 most heat-intensive sectors (iron and steel, oil refining, chemicals, food and drink, paper and pulp, cement, glass and ceramics).

Understanding how businesses make investment decisions in an uncertain environment

Hurdle Rates under CFDs (pre-tax, real)

%	Offshore wind	Biomass conversion	Onshore wind
NERA illustrative range under CfDs*	9.3% - 11.2%	10.4% - 11.8%	6.6% - 8.0%
EMR delivery plan hurdle rate assumptions	10.1%	10.9%	7.1%

*Includes "EMR novelty risk premium"

Sources: NERA, Changes in Hurdle Rates for Low Carbon Generation Technologies, December 2013, and National Grid, EMR Analytical Report, December 2013

- Evaluation of Electricity Market Reform
- Investor risk appetite and perceptions of risk
- Limited versus perfect foresight regarding fossil fuel prices, future policies and carbon prices, and future technology costs

Innovation and cost reduction for low carbon technologies and mitigation of long-run technology risks

- **Technology costs**: which technologies matter and do costs decrease with greater deployment?
 - In power, new nuclear, CCS and offshore wind are potentially scalable
 - Offshore wind costs depend on UK deployment
- Potentially disruptive technologies: immature new technologies
 - Battery or other storage technologies
 - Intermittent renewables (wind, solar PV) plus cheap storage
- Supply chain: feasible deployment rates without bottlenecks and higher costs
- Fossil fuel and carbon prices: high, low or somewhere in between?

Optimising the power system and across the power and gas systems as heat and power are decarbonised are key

Comparison of heat and electricity demand variability in 2010, domestic and commercial

Source: Imperial College

Alternative power system balancing technologies, including interconnection

Source: Imperial College and NERA, Understanding the balancing challenge, August 2012

Source: Courtesy of Imperial College. For illustrative purposes only and based on actual half-hourly electricity demand from National Grid and an estimate of half hourly heat demand.

Understanding macroeconomic and distributional impacts of energy and climate change policies

- Economic growth investment and productivity impacts associated with energy infrastructure and energy efficiency
- Impacts on fiscal and external balances green taxes and substitution of capital for imported fossil fuels
- New supply chains offshore wind and new nuclear
- Adverse competitiveness impacts energy intensive industries and leakage
- Impacts on fuel poverty role of energy efficiency in mitigating fuel poverty

Thank you! Developing DECC's Evidence Base

https://www.gov.uk/government/publications/developing-deccs-evidence-base