

Delivering zero carbon electricity

Richard Smith Future Transmission Networks Manager

BIEE – 22nd September 2011

Is the future electric?

Is the future electric?

Significantly (but not entirely)

Is the Grid ready to invest?

Is the Grid ready to invest?

YES (but that's not the right question)

2050: where will our energy come from?

~50% from electricity at ~15g CO₂(e) / kWh

- Wind, nuclear & CCS dominant at ~25GW 30GW each
- ~20GW other renewables
- ~15GW interconnection
- ~20GW embedded generation

~35% from gas at ~185g CO₂(e) / kWh

- LNG & continental imports
- Bio-methane

~15% from oil at ~245g CO₂(e) / kWh

Generation capacity mix

2020: where will our energy come from?

~20% energy from electricity at ~200g CO₂(e) / kWh

- Wind, gas dominant at ~30GW each
- ~11GW nuclear
- Some unabated coal
- ~10GW interconnection
- ~14GW embedded generation

~40% from gas at ~185g CO₂(e) / kWh

- LNG & continental imports increase
- UKCS & Norwegian gas decline

~40% from oil at ~245g CO₂(e) / kWh

Generation capacity mix

Key policy debate: the balance between gas and electricity

Electricity demand ~1,000 GWh / day

Gas demand

~4,000 GWh / day

(avg. November day)

Energy use is 'peaky'...

Full electrification of heat: what you have to believe...

~150 GW of heat electrified =

Nuclear?	~45 sites at 3.3GW / site		
Renewables?	~30,000 wind turbines at 5MW / turbine		
CCS?	~75 sites at 2GW / site		
Solar PV?	~40m homes at 17m ² / home		
Inter- connectors?	~150 BritNed's at 1GW each		

...even after significant energy efficiency

The transmission delivery challenge

Change 2010 to 2020 (GW)

* Electric vehicle and heat pump at mid-range peak demand.

The transmission delivery challenge

The distribution delivery challenge

Peak electricity demand in the home increases significantly

- ~2.5kW peak appliance demand for an average house in 2010
- ~3kW charge for an electric car
- ~3.5kW demand for a heat pump
- ~9kW potential total demand

Distribution networks will need to double their capacity

	2010	2030	2050
Household demand*	~2.5kW	~4.7kW	~7kW
Embedded generation	~8GW	~15GW	~20GW
Network loading (kW/km)	~75	~170	~300
Network scale		X2.3	X4.0

* After diversity average peak demand

Network scale vs 2010 levels

The real question is...

The real question is...

What do our customers want from grids?

RIIO: stakeholder engagement and value for money...

Our plan to 2020/21: £16.8bn totex*

We will:

- Expand and renew the transmission network
- Find and develop enough people with the right skill sets
- Innovate the way we work and deliver outputs
- Upgrade critical IT systems
- Secure planning permission to deliver the required major infrastructure projects
- Manage commodity volatility
- Support the development of the regulatory and legal framework