An affordable and effective route to decarbonising transport

BIEE Energy and Climate Seminar
Wednesday 4th October 2017
Liam Lidstone – Strategy Manager
Light Vehicles in the UK

- **30m**
 - There is a total parc of over 30m cars

- **42.6%**
 - There was a 42.6% increase in the number of vans in the parc (2003 – 2016)

- **4.6m**
 - Between 2003 and 2016 the overall parc grew by 4.6 million cars

- **13.9yrs**
 - The average life of a car on the road has now exceeded 13 years

average car scrappage age in 2015 (SMMT, 2017)

Based on DfT vehicle statistics (2017)
Light Vehicles in the UK

Light vehicles contribute around 16% of CO₂ emissions

Only around a third of UK car mileage is in urban areas. Over two thirds of UK mileage is on motorways and major “A” roads

The cost in 2050 for a low carbon vehicle system is only about 5% more expensive than a do nothing approach – but transition costs are significant

400 billion person-miles are travelled by car each year – 10x more than rail and 20x more than bus/coach

Based on DfT vehicle statistics (2017)
Plug-in vehicle sales

Based on DIT vehicle statistics (2017)
Vehicle life

Some vehicles are pre-registered or sold on within first year

28% of mileage

33% of mileage

19% of mileage

20% of mileage

Compiled using NTS data
Vehicle usage

- **Cars with an Annual Mileage above 10k Miles**
- **Cars with an Annual Mileage between 5k and 10k Miles**
- **Cars with an Annual Mileage below 5k Miles**

Round-trip Distance from Home

- >200 Miles
- <200 Miles
- <150 Miles
- <100 Miles
- <50 Miles
- <25 Miles

Proportion of Mileage within each Mileage Band

- **Rural Based Cars**
- **Semi-Urban Based Cars**
- **Urban Based Cars**

Trip Length (Per Leg of Journey)

- > 50 Miles
- < 50 Miles
- < 25 Miles
- < 10 Miles
- < 5 Miles

Proportion of Trips within Area Group

Compiled using NTS data
Consumer attitudes to plug-in vehicles

- Earliest Purchasers
- Interested Consumers
- Reluctant Consumers

- PIONEERS
- Zealous OPTIMISTS
- Willing PRAGMATISTS
- Anxious ASPIRERS
- Uninspired FOLLOWERS
- Conventional SCEPTICS
- Image-conscious REJECTERS

- Increasing premium
- Increasing discount

- Pure Battery Electric Vehicle
- Plug-in Hybrid Electric Vehicle
Where to support charging

Parking availability at homes

Proportion of Parc

Arrivals of a Given Vehicle at a Given Location Each Week

- Home
- Food Shopping Location
- Eat / Drink Location
- Workplace
- Other Shopping Location

Based on DCLG data

Compiled using NTS data

© 2017 Energy Technologies Institute LLP - Subject to notes on page 1
Meeting vehicle charging requirements

Journey arrival times (2007-2010) and Electricity demand profile (7th December 2010)

- Education (But Excl. Escorting Others)
- Holiday Base / Day trip
- In course of work
- Personal Business (Medical, Eat/drink, Other)
- Visiting Friends / Socialising / Entertainment / Sports
- Escorting Others
- Shopping (Food and Other)
- Travel to Work
- Return Home
- Electricity demand

Compiled using NTS and UKERC data
Network reinforcement costs

- High Uptake of Plug-in Vehicles
- Medium Uptake of Plug-in Vehicles
- Low Uptake of Plug-in Vehicles

Worst Case Recharging Patterns
- Recharging Always Overnight

Cumulative network reinforcement costs (£bn)

Year

Cumulative Network Reinforcement Costs (£bn)

Low Uptake of Plug-in Vehicles

Medium Uptake of Plug-in Vehicles

High Uptake of Plug-in Vehicles

Worst Case Recharging Patterns

Recharging Always Overnight
ETI analysis examining how to decarbonise “light vehicles” securely, sustainably and affordably was published in 2013, highlighting:

- Electrification (PHEVs and BEVs) as the least risk, least cost evolutionary path
- Where to support charging and the interactions with the energy system
- The importance of considering how to transition the fleet as a whole
- The need for a cohesive market and policy framework

The work also highlighted that, in decarbonising cars and vans, there are major challenges around:

- Meeting user energy supply requirements, whilst managing energy capacity constraints
- Implementing intelligent vehicle charging without compromising vehicle utility
- Developing greater understanding as to where and to what extent to invest in network reinforcement
- Understanding the opportunity for integrating liquid and electric “fuel” supply systems for vehicles, and utilising the capability of the liquid fuel system

Or search for: ETI transport transition or ETI light vehicles report
• £5m, 2.5 year project to address the challenges involved in transitioning to a secure and sustainable low carbon vehicle fleet

• Aims to understand changes to market structures and energy supply systems to support high deployment of plug-in vehicles, the technical implications of any changes and how people might respond to them

• It will examine how tighter integration of vehicles with the energy supply system can benefit:
 – vehicle users
 – vehicle manufacturers
 – organisations throughout the energy supply chain

• The outputs are being made available to:
 – help inform UK and European government policy
 – help shape energy and automotive industry products
The project is in two stages

Stage 1

Detailed design & analysis to characterise:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market, policy and regulatory frameworks</td>
<td></td>
</tr>
<tr>
<td>Business models and customer offerings</td>
<td></td>
</tr>
<tr>
<td>Integrated vehicle and infrastructure systems and technologies for electricity and liquid fuel / hydrogen</td>
<td></td>
</tr>
<tr>
<td>Consumer and fleet attitudes to adoption and usage behaviours</td>
<td></td>
</tr>
</tbody>
</table>

Stage 2

Test and validate solutions and assess responses

- Experimental field trials with mainstream consumers
- Case studies with fleets
- Updates to analytical tools
Consumer adoption: understanding the mass-market

Early stages of adoption
- Users with access to EVs are still classed as ‘Innovators’ (i.e. very early stage of adoption)
- To date, trials have been conducted using only Innovators
- Low numbers of consumers
- Attitudes and behaviours are not representative of the majority of users

Future majority ‘Mass-market’ consumers
- Much larger numbers of users
- These will significantly influence the energy system
- Very different motivations, attitudes and behaviours to those of Innovators
- Unlikely currently to use or own a plug-in vehicle
- Do not generally have specific motivations for early adoption of plug-in vehicles
- Less likely to adapt behaviour (e.g. to accept managed charging) to meet needs of the vehicle or energy system
A combined set of modelling tools have been developed to provide an *integrated, holistic* means of quantifying and qualitatively assessing the impacts on and from *infrastructure, consumers, vehicle uptake and use, policy measures* and *commercial models* across the system.
Interim findings

Reducing the upfront cost of ULEVs is a crucial driver of uptake in the near to medium term

ULEV uptake can lead to a sizeable drop in net transport-related Government revenues

A moderate uptake of ULEVs can be expected even with limited Government intervention but this does not result in the lowest Government revenue gap

Rapid charging development is a priority to enable sufficient deployment for the medium term

Infrastructure entities likely to be loss-making in the near to medium term but would appear profitable in the long term

Successful demand management reduces balancing and network costs – must be tested with mainstream consumers
Roadmap for efficient ULEV uptake and use

Government policy and market intervention
- EU emission regs
- Tightening emissions regs
- Limited coordination and support for rapid charging
- DM shared services framework
- Coordinated DM procurement
- Facilitation of urban car sharing
- H₂ appraisal
- H₂ infrastructure de-risking

Actions by commercial entities
- User-Managed Charging use
- Supplier-Managed Charging use
- Rapid charging infrastructure investment
- Initial car sharing implementation
- Mass market car sharing implementation
- Hydrogen infrastructure investment

2015
- Upfront cost mitigation for ULEVs
- Social transition support

2020
- Carbon price pass through for liquid fuels
- Central DM market platform
- Support for larger scale car sharing
- Road pricing
- Competition monitoring

2030
- Essential

2040
- Desirable

2050
- Provisional
Trials will deliver further robust evidence

Charging Behaviour Trial

- Assess response to different tariff propositions – user-managed (ToU tariff) versus supplier-managed charging
- 240 consumers, 2 months with a vehicle, (parallel) BEV and PHEV trials
- Data on use and charging with additional questionnaires and choice experiments

Vehicle Uptake Trial

- To enhance understanding of adoption of EVs
- 200 consumers, given 4 days with each of 3 vehicles in turn (BEV, PHEV, ICE)
- Additional questionnaires and choice experiments (with reduced ‘psychological distance’)