

Policy Studies Institute at the University of Westminster

Scenarios for the Development of Smart Grids in the UK

Synthesis Report

Lead Authors Nazmiye Balta-Ozkan, Tom Watson, Peter Connor, Colin Axon, Lorraine Whitmarsh, Rosemary Davidson, Alexa Spence, Phil Baker and Dimitrios Xenias

Other Contributors Liana Cipcigan and Gary Taylor.

UKERC

February 2014

Envisioning Smarter Power Futures: UK Smart Grid Scenarios

Dr Peter Connor

18th September 2014

Context Expert interviews Online surveys Expert workshop Smart grid scenarios Key messages

Context

Expert interviews Online surveys Expert workshop Smart grid scenarios Key messages

Smart grids

- Contributions to UK energy and climate change policy goals
- Smart grids apply innovative technologies
 - Better planning & management
 - Actively manage supply & demand
 - New energy services
- Smart grids include many technological and non-technological options

Need for smart grid scenarios

- Scenarios a framework to inform decisionmaking
- Scenarios are **NOT** predictive in any way
- A variety of approaches
- Our scenarios are
 - System perspective; socio-technical
 - Branching points rather than mere end points
 - Build on existing scenarios
- Our scenarios are not
 - Costed pathways

– Technology roadmaps

Objectives

- Identify key steps likely to determine the future shape of smart grids at the upstream level and end user level; and
- 2. Develop a range of socio-technical smart grid scenarios, paying particular attention to:
 - a) critical transition points within each scenario
 - b) social and spatial differences within the UK energy system

Context Expert interviews Online surveys Expert workshop Smart grid scenarios Key messages

JKERC

Expert interviews: findings

- Predictability and uncertainty
- Planning and investment by DNOs
- Co-ordination
- Local grid issues
- Smart meter rollout
- Consumer engagement
- Skills shortages

Context Expert interviews Online surveys Expert workshop Smart grid scenarios Key messages

JKERC

Online surveys

Online surveys: findings	
Top-cited benefits of smart grids	<u>% of</u> <u>experts</u>
Cost reduction in different levels of the system	39
Improved efficiency in generation, delivery and use of assets	39
Facilitation of renewable energy sources of electricity	24
Emissions reductions	24

Online surveys: findings

Top-cited pitfalls of smart grids	<u>% of</u> experts
Costs or lacking/risky investment	42
Disengaged or uncooperative customers	27
Complexity or difficult-to-manage solutions	21
Data protection/privacy concerns	18

Online surveys: findings

Smart grid essential functions	% of experts
Balancing a power grid with lots of RE	82
Increasing observability & controllability of	75
Enabling deployment of DSR technologies	74
Enabling active network management	73
Allowing integration of active loads	71
Facilitating energy storage	

Context Expert interviews Online surveys Expert workshop Smart grid scenarios Key messages

JKERC

Expert workshop: May 2013

- Test the endpoints of the scenarios as well as trajectories
- Add depth and timelines to the scenarios
- Some highlights:
 - Grid-scale storage deployment [2-17 years]
 - Consumers become active quite late
 - Regulation key role

Context Expert interviews Online surveys Expert workshop Smart grid scenarios Key messages

1. Minimum Smart

The defining theme in this scenario is a lack of drivers that push the development of a smart grid.

UKERC

Minimum Smart (to 2030)

- Tensions exist between environmental and economic goals
- National smart meter programme is badly organised and negatively perceived by the general public. Trust in energy suppliers remains low
- Capacity concerns and the absence of a global climate deal spurs on growth of gas generation
- There is little need for demand side flexibility with large amounts of gas generation

Minimum Smart (2030-2050)

- Smart technologies, on both demand and supply side, largely remain niche technologies
- Increasing the capacity of local transformers is generally sufficient to handle localised increases in power demand
- Gas as 'bridging fuel' has left a legacy of plants that are expensive to close so the UK attempts to meet climate obligations by buying increasingly expensive carbon permits.
- The distribution networks are largely similar to today

2. Groundswell

 The key feature of this scenario is the significant public engagement with energy issues.

Groundswell (to 2030)

- Declining capacity margin, rising prices and effective smart meter rollout prompt interest in energy savings
- Well-designed regulatory framework encourages network investment in innovation (move to DSOs)
- Local authorities can play greater role; some partner with businesses; benefits flow to local communities
- Biomass CHP, PV on social housing and wholeblock renewable heating all much more common
- Rapid growth of alternative tariffs and microgeneration

Groundswell (2030-2050)

- Rapid growth in small-scale generation and onset of demand management opportunities. Rural areas in particular generate a large amount of their own power
- EVs much more competitive and batteries can be used to smooth peaks; common in affluent suburbs
- DNOs control some smaller generators and so play a more active role in local balancing
- Mandatory CCS reduces flexibility although this is offset by strong integration with Europe
- Large-scale generation to meet needs of cities and industry; grid electricity acting as backup in EXETER
 Lareas

3. Smart Power Sector

Strong government-led commitment to energy and climate targets, although with consumer resistance to demand measures.

Smart Power Sector (to 2030)

- Negative press coverage of smart meters and data security fosters public scepticism and limits savings
- New nuclear but also large growth in offshore wind
- Some monitoring and control equipment appears in networks although in absence of microgeneration and large load increases it is not widespread
- Some EVs start to appear around 2030 as a charging infrastructure is developed

Smart Power Sector (2030-2050)

- Very large amount of wind generation by mid-2030s although little demand side flexibility as consumer behaviour remains unresponsive
- Growth in demand from EVs leads to exacerbation of peaks, meaning flexiblility has greater system value
- Storage develops and although expensive it is the only way to meet very large evening peaks
- DNOs have to upgrade many local networks conventionally to handle greater residential demand but there is a large amount of network smartness where cost-effective, leading to EXETER

4. Smart 2050

Strong
 willingness and
 co-ordination
 between
 industry, the
 government and
 the public.

Smart 2050 (to 2030)

- International climate agreements drive decarbonisation
- Smart meter rollout successful and market entrants provide a range of new services (e.g. apps)
- Clear long-term policy supports renewables growth
- More engaged consumers lead a trend towards advanced consumer technology (e.g. in-home displays)
- Regulatory changes give DNOs greater flexibility when investing beyond RIIO-ED1; growing EXETER
 K and beat pumps adoption drives network

omortoooo

Smart 2050 (2030-2050)

- Long-distance transmission across Europe acts to provide a flexible supply source as renewables continue to grow in the UK
- Adoption of air- and ground-source heat pumps in areas with EVs leads to new technologies and tariffs to reduce peakiness and spread load more evenly
- DNOs (or third parties) can access near-to-realtime data to assist with this, and communicate directly with customers to maximise benefits of demand flexibility
- Aggregators and energy service companie
 JK aşignificant role in the residential market

Context Expert interviews Online surveys Expert workshop Smart grid scenarios Key messages

Key messages

- 1. There is a need to develop ways of measuring progress
- 2. Equitable outcomes
- 3. Building trust
- 4. Benefits need to be clear
- 5. Manage risk, innovation and investment
- 6. Need to identify no-regrets solutions

