

Carbon tax or carbon permits: the impact on generators' risks

Richard Green

Institute for Energy Research and Policy

The Issue

- Fuel prices are volatile
- Costs of fossil fuelled generators are risky
- Nuclear generators have stable costs
- So build nuclear for insurance?
- Social and corporate answers differ!
 - Roques et al., Energy Journal 2006

This paper

- Carbon prices correlated with gas and coal
 - Adds to risk of nuclear stations
- Will a carbon tax reduce nuclear risks?
- Detailed electricity model to calculate profits
- Consider risks and returns for single plants
- Consider optimal portfolio of gas and nuclear

Supply function model

- Firms offer schedules of prices and quantities to meet varying demand
- Klemperer and Meyer (Eta, 1989)
- Green and Newbery (JPE, 1992)
- Evans and Green (U.Bham, 2005)

The Model

- Profits are a function of price
- Your sales are demand less others' supply $\pi_i(p,t) = p\left(D(p,t) - \sum_{i \neq i} q_i(p)\right) - C_i\left(D(p,t) - \sum_{i \neq i} q_i(p)\right)$ Maximise for any level of demand **** $\frac{\partial \pi_i(t)}{\partial p}$

$$\frac{dt}{dt} = D(p,t) - \sum_{j \neq i} q_j(p) + \left(p - C'_i \left(D(p,t) - \sum_{j \neq i} q_j(p) \right) \right) \left(\frac{\partial D(p,t)}{\partial p} - \sum_{j \neq i} \frac{\partial q_j}{\partial p} \right)$$

The Model

- Treat industry "as if" firms are symmetric
- Number is inverse of Herfindahl index

- Squared market shares

$$q_i(p) = \left(p - C'_i \left(q_i(p) \right) \right) \left(-\frac{\partial D}{\partial p} + (\hat{n} - 1) \frac{\partial q_i}{\partial p} \right)$$

• In this case, treat as if 6 symmetric firms

Figure 1: Industry supply function - DTI Base Case

The Policies

- Carbon permits with a price that equalises MC of coal and gas generation + N(0,1)
 - Permits are auctioned
- Carbon tax = the expected permit price

Generation

- Costs from DTI Energy Review, 2006
 - O&M costs, thermal efficiencies
 - Capital costs discounted at 10%
- Capacities from SUPERGen FUTUREnet Scenarios for 2020 (Elders et *al.*)
 - 35 GW gas, 12 GW coal, 13 GW nuclear
 - -22 GW renewable with random output

Fuel Prices

- Mean values are DTI base case
- Normal distributions: DTI high and low $\approx \pm 2$ s.d.
- Correlation between gas and coal / oil ≈ 0.45

£/MWh	Coal	Gas	Oil
Mean	3.98	12.45	16.00
Standard Deviation	1.34	3.00	4.50

Profits with carbon emissions permits

Profits with a carbon tax

Profits with carbon emissions permits

Profits with free emissions permits

Thinking Networks

Portfolio Effects

- Nuclear and coal have more risk and lower expected profit than gas
- Gas profits negatively correlated with those of coal and nuclear
- Combining in a portfolio may reduce risk

Portfolios of gas and nuclear plant

SUPERG

FUTURENet

Standard deviation of profit (£/kW-year)

Conclusion

- Mainly-gas portfolios have higher risk and return with carbon tax than with permits
- Optimal share of nuclear may rise with tax
 Could still be zero for low risk aversion
- Nuclear needs stable selling price to be attractive to firms

