# Carbon Taxation if Liquefied Coal will (not) Substitute Oil

Florian Habermacher

University of St. Gallen

20 Sept 2012



in association with



#### European Energy in a Challenging World: The impact of emerging markets

9th BIEE Academic Conference

St John's College, Oxford, England 19-20 September 2012

Florian Habermacher (UNISG)

Carbon Tax w(/o) Future Liquefaction

# Introduction

- Leakage crucial for climate policy, widely studied
- Fuel channel dominant
- Often CGE
  - often static (fuel supply)
  - sectors use aggregage 'energy' inputs  $\rightarrow$  sector specific leakage (and pricing)

- Fuel depletion (and future developments and discounting) crucial
  - $\bullet\,$  w/o future developments & discounting: leakage  $\rightarrow\,100\,\%$

- $\rightarrow$  Here: dynamic model of fuel market with depletable fuels
  - $\bullet\,$  discounting  $\rightarrow\,$  leakage oil  $\approx+50\,\%$  , coal  $<10\,\%$
  - future CTL ightarrow leakage oil pprox –75 %, coal pprox +10 %

#### $\Rightarrow$ optimal fuel emission tax thus fuel-specific, scenario dependent

# **Efficient Climate Tax**

 $\mathsf{Pigou} \to \mathsf{uniform}, \mathit{global}, \mathsf{tax} \mathsf{ per unit of emissions}$ 

Reality: only *regional* policy  $\Rightarrow$  At least regionally *uniform* tax?

 $\mathsf{Pigou} \to \mathsf{uniform}, \mathit{global}, \mathsf{tax} \mathsf{ per unit of emissions}$ 

Reality: only *regional* policy  $\Rightarrow$  At least regionally *uniform* tax?

#### NO!

Regional emissions affect emissions elsewhere

Taget is reduction of global (not regional) emissions

$$\Rightarrow \quad T_i^* = \operatorname{WTP}_{glob \operatorname{CO}_2} \quad \cdot \quad glob \operatorname{CO}_2 \text{ of } i$$

$$\Rightarrow \quad \tau_i^* = \operatorname{WTP}_{glob \operatorname{CO}_2} \quad \cdot \quad \underbrace{glob \operatorname{CO}_2 \text{ of } i / \operatorname{reg CO}_2}_{\equiv 1 - \operatorname{leakage}_i}$$

# Exhaustibility: oil vs. coal

E.g. van der Ploeg & Withagen 2011<sup>1</sup>

- "Oil [...] at most another half a century", "coal [...] another 3-4 centuries"
- "Coal relatively cheap to extract compared to oil"
- $\rightarrow$  they assume oil exhaustible & coal limitless



E.g. International Energy Agency 2010<sup>2</sup>

|      | Reserves (incl. unconv) | Reserves/Production |  |
|------|-------------------------|---------------------|--|
| Oil  | 1350 Gbbl               | 46 years            |  |
| Coal | 1000 Gt                 | 210 years           |  |

E.g. International Energy Agency 2010<sup>2</sup>

|      | Reserves (incl. unconv) | Reserves/Production | Resources |
|------|-------------------------|---------------------|-----------|
| Oil  | 1350 Gbbl               | 46 years            | ×3        |
| Coal | 1000 Gt 210 years       |                     | ×15       |

# **Dynamic Fuel Market Model**

Small dynamic equilibrium model for oil & coal.

Regions OECD and non-OECD (ROW),  $r = \{o, n\}$ 

Fuels oil and coal,  $i = \{1, 2\}$ , Prices  $p_i$ , Emission intensities  $\varepsilon_i$ 

Regional fuel consumption  $x_r = \{x_{r,1}, x_{r,2}\}$ 

Regional Utility of fuel cons.  $u_r(x_r)$ :  $2^n d$  order Taylor polynomial

Global Emissions  $E = \sum_{r,i} x_{r,i} \varepsilon_i$ 

Emission tax in OECD.

• Instantaneous regional welfare  $W_r$  $W_r = \underbrace{u_r(x_r)}_{-c_r(x_r)} \underbrace{-c_r(x_r)}_{-D_r(E)}$ 

fuel cons.util. fuel cost emiss.disutil.

• Present discounted total welfare  $\mathbb{W}_r = \int_t W_{r,t}^{\delta \cdot t} dt$ , where  $\delta$  discount factor  $\delta = 1 - \rho_{cons}$ 

Decentralized regional fuel consumption decision - FOCs:

• No Tax: 
$$\frac{\partial u_r(x_r)}{\partial x_{r,i}} \stackrel{!}{=} p_i \quad \forall_i$$
  
• Tax:  $\frac{\partial u_r(x_r)}{\partial x_{r,i}} \stackrel{!}{=} p_i + \tau_i \varepsilon_i \quad \forall_i$ 

# Model: Fuel Suppliers – Hoteling Framework

Rate of supply (=consumption)  $r_t$ 

Inverse fuel demand  $p_t(r_t)$ 

Cumulative extractions  $A_t = \int_{s=0}^t r_s \mathrm{d}s$ , and  $A_0 = 0$ 

Extraction cost curve  $e(A_t)$ ,  $e'(A_t) > 0$ 

Maximize present discounted net profits

# Model: Fuel Suppliers – Hoteling Framework

Rate of supply (=consumption)  $r_t$ 

Inverse fuel demand  $p_t(r_t)$ 

Cumulative extractions  $A_t = \int_{s=0}^t r_s \mathrm{d}s$ , and  $A_0 = 0$ 

Extraction cost curve  $e(A_t)$ ,  $e'(A_t) > 0$ 

Maximize present discounted net profits

ightarrow Hamiltonian

$$\mathcal{H} = r_t \cdot (p_t(r_t) - e(A_t)) - \lambda_t r_t$$
  
s.t.  $\dot{A} = r_t$ 

FOCs

$$\frac{\partial \mathcal{H}}{\partial r_t} = 0: \quad p_t(r_t) \stackrel{!}{=} e(A_t) + \lambda_t$$
$$\dot{\lambda}_t = \rho_{\rm res} \lambda_t + \frac{\partial \mathcal{H}}{\partial A_t}: \quad \dot{\lambda}_t \stackrel{!}{=} \lambda_t \rho_{\rm res} - \dot{e}_t$$

# Model: Fuel Suppliers – Hoteling Framework

Rate of supply (=consumption)  $r_t$ 

Inverse fuel demand  $p_t(r_t)$ 

Cumulative extractions  $A_t = \int_{s=0}^t r_s \mathrm{d}s$ , and  $A_0 = 0$ 

Extraction cost curve  $e(A_t)$ ,  $e'(A_t) > 0$ 

Maximize present discounted net profits

ightarrow Hamiltonian

$$\mathcal{H} = r_t \cdot (p_t(r_t) - e(A_t)) - \lambda_t r_t$$
  
s.t.  $\dot{A} = r_t$ 

FOCs

$$\frac{\partial \mathcal{H}}{\partial r_t} = 0: \quad p_t(r_t) \stackrel{!}{=} e(A_t) + \tau_t \varepsilon + \lambda_t$$
$$\dot{\lambda}_t = \rho_{\rm res} \lambda_t + \frac{\partial \mathcal{H}}{\partial A_t}: \quad \dot{\lambda}_t \stackrel{!}{=} \lambda_t \rho_{\rm res} - \dot{e}_t$$

# Model: Specification

## CONSUMERS

 Fuel Demand Benchmark q & p

|      | Consun    | Drico <sup>8</sup> |          |
|------|-----------|--------------------|----------|
|      | OECD      | ROW                | FILE     |
| Oil  | 16.4 Gbbl | 14.3 Gbbl          | 76\$/bbl |
| Coal | 1.61 Gt   | 3.12 Gt            | 83\$/t   |

- Elasticities: Direct: -0.9, Cross-price: avg. 0.2 (close to Golombek&al.'95<sup>3</sup>)
- Policy: Emission discount rate 0.5 %
- $\bullet$  OECD: WTP = 40  $\rm CO_{2,glob}$

# Model: Specification

## SUPPLIERS

• Extraction cost curve



#### Coal:

Exponential increase  $c(A) = c_0 \cdot 2^{A/A_d}$ ,  $A_d = 10\,000 \,\mathrm{Gt}$  (slow)  $A_d = 1000 \,\mathrm{or}\,2000 \,\mathrm{Gt}$  (rapid)

• Time-discount rate for profit:  $\rho_{\rm res} = 3\%$ 

## Model: Results

#### Time path, no tax (BAU)



Florian Habermacher (UNISG)

Carbon Tax w(/o) Future Liquefaction

## Model: Results

#### Tax effect, e.g. oil (Tax vs. BAU)



#### 'Definition' Optimal OECD Climate Tax



#### 'Definition' Optimal OECD Climate Tax



Will correspond to discounting-adjusted WTP.'1-leakage rate'

#### Optimal tax rates (Tax vs. BAU)

|      | Tax $[/ tCO_2]$ |  |  |  |
|------|-----------------|--|--|--|
| Oil  | 20              |  |  |  |
| Coal | 38              |  |  |  |

for WTP 40/tCO<sub>2</sub> for global emission reductions.

#### Optimal tax rates (Tax vs. BAU)

|      | Tax $[/ tCO_2]$                    |  |  |
|------|------------------------------------|--|--|
| Oil  | 20 <sup>1</sup> / <sub>2</sub> WTP |  |  |
| Coal | 38 WTP                             |  |  |

for WTP 40  $/ tCO_2$  for global emission reductions.

# **Extension: Liquefaction (CTL)**

-Depleting Oil soon expensive; then CTL delivers SynOil -OECD does not liquefy coal by itself, due to pricing of emissions.

-SynOil in medium-run and large abundance of coal  $\Rightarrow$  *domestic* oil consumption *translates*  $\approx$ 1:1 to *global* oil consumption

 $\Rightarrow$  Each bbl oil bought by OECD implies  $\approx 1$  more barrel of SynOil to be produced, with well-to-wheel emissions >2x as high.

⇒**Uniform tax very inefficient**: favouring of oil over coal as energy source, despite larger induced emissions.

## CTL

 $\bullet$  Yield:  $2\,{\rm bbl}_{\rm oil}/{\rm ton}_{\rm coal}$  ,  $^{4,5}$ 

• Overhead cost: 15\$/bbl

• Emissions  $\varepsilon_{\rm SynOil}/\varepsilon_{\rm CrudeOil} = 2.3$ . <sup>6,7</sup>

# Liquefaction: Results

#### Tax effect, e.g. oil (Tax in CTL-scenario)



#### Optimal tax rates (Scenario with CTL)

| Tax $[\%/tCO_2]$ |    |  |  |
|------------------|----|--|--|
| Oil              | 70 |  |  |
| Coal             | 36 |  |  |

for WTP  $\overline{40 \$ / tCO_2}$  for global emission reductions.

#### Optimal tax rates (Scenario with CTL)

|      | $Tax \ [\$/ tCO_2]$    |  |  |
|------|------------------------|--|--|
| Oil  | 70 1 <sup>3</sup> 4WTP |  |  |
| Coal | 36 WTP                 |  |  |

for WTP  $\overline{40 \$ / tCO_2}$  for global emission reductions.

# Summary Model Results

- Coal leakage low
- $\bullet$  Oil leakage:  $\approx 50\,\%$  in BAU scenario,  $\approx -70\,\%$  in CTL scenario

#### $\Rightarrow$ Optimal taxes

|                                         | BAU |      | CTL |       |
|-----------------------------------------|-----|------|-----|-------|
| Oil                                     | 20  | ½WTP | 70  | 1¾WTP |
| Coal                                    | 38  | WTP  | 36  | WTP   |
| in $/ tCO_2$ for WTP=40 $/tCO_{2,glob}$ |     |      |     |       |

# Summary Model Results

- Coal leakage low
- $\bullet$  Oil leakage:  $\approx 50\,\%$  in BAU scenario,  $\approx -70\,\%$  in CTL scenario

#### $\Rightarrow$ Optimal taxes

|                                         | BAU |      | CTL |       |
|-----------------------------------------|-----|------|-----|-------|
| Oil                                     | 20  | ½WTP | 70  | 1¾WTP |
| Coal                                    | 38  | WTP  | 36  | WTP   |
| in $/ tCO_2$ for WTP=40 $/tCO_{2,glob}$ |     |      |     |       |

#### ! Note !

# If CTL expands in *future*, this implies *already for current tax* on oil emissions: $\tau_{oil}^* > WTP_{CO_2,glob}$ !

(i) Longer time-horizon, (ii) cross-elasticities, (iii) resources belonging to OECD&ROW, (iv) faster coal depletion, (v) growing demand, (vi) emission intensity unconventional oil

(i) Longer time-horizon, (ii) cross-elasticities, (iii) resources belonging to OECD&ROW, (iv) faster coal depletion, (v) growing demand, (vi) emission intensity unconventional oil

#### Some influence:

- Optimal *initial* tax, in case of CTL: lower  $\tau_{oil}$  but still substantially >WTP.
- Early CTL:  $au_{oil}$  higher

(i) Longer time-horizon, (ii) cross-elasticities, (iii) resources belonging to OECD&ROW, (iv) faster coal depletion, (v) growing demand, (vi) emission intensity unconventional oil

## Some influence:

- Optimal *initial* tax, in case of CTL: lower  $\tau_{oil}$  but still substantially >WTP.
- Early CTL:  $au_{oil}$  higher

## Large Effect:

- Late CTL: more uniform tax (larger leakage & discounting of CTL-emissions)
- Exogenous stoch. backstop: less pronounced tax differentiation (depending on CTL-timing and discount rate)

(i) Longer time-horizon, (ii) cross-elasticities, (iii) resources belonging to OECD&ROW, (iv) faster coal depletion, (v) growing demand, (vi) emission intensity unconventional oil

## Some influence:

- Optimal *initial* tax, in case of CTL: lower  $\tau_{oil}$  but still substantially >WTP.
- Early CTL:  $au_{
  m oil}$  higher

## Large Effect:

- Late CTL: more uniform tax (larger leakage & discounting of CTL-emissions)
- Exogenous stoch. backstop: les pronounced tax differentiation (depending on CTL-timing and discount rate)
  - Confirms: Future Developments & Discounting of prim. import.!

- Leakage inherently dynamic problem, cannot reasonably be dealt with in static (supply) setting
- Future climate relevant developments crucial for attributable leakage from current policies
- Ditto for discount factor (absolutely missing in traditional leak.lit.)
- Fuel-differentiation potentially important

- Leakage inherently dynamic problem, cannot reasonably be dealt with in static (supply) setting
- Future climate relevant developments crucial for attributable leakage from current policies
- Ditto for discount factor (absolutely missing in traditional leak.lit.)
- Fuel-differentiation potentially important

#### Limits of this analysis

- Only very rough estimates
- Fuel trade costs and final goods trade to be modelled
- Demand can be modelled in more detail

Florian.Habermacher@unisg.ch

## Literature

1 Optimal Carbon Tax with a Dirty Backstop Oil, Coal, or Renewables?, *CESifo WP* 3334, Jan.

2 International Energy Agency (IEA) (2010), World Energy Outlook 2010, OECD/IEA, Paris.

3 Golombek, Hagem Hoel (1995), Efficient Incomplete International Climate Agreements, *Resource and Energy Economics* 17(1), pp. 25–46.

4 DOE/NETL (2006), Economic Impacts of U.S. Liquid Fuel Mitigation Options, National Energy Technology Laboratory Department of Energy, *Report*, USA, July.

5 Bartis, Camm and Ortiz (2008), Producing Liquid Fuels from Coal, *Prospects and Policy Issues*, Rand Corporation, Santa Monica CA et al.

6 DOE/NETL (2009), Affordable, Low-Carbon Diesel Fuel from Domestic Coal and Biomass, National Energy Technology Laboratory Department of Energy, *Report*, USA, January.

7 Environmental Protection Agency (EPA) (2007), Greenhouse Gas Impacts of Expanded Renewable and Alternative Fuels Use, Emission Facts, Office of Transportation and Air Quality, EPA, Washington, DC, April.

8 World Bank (2011). World Bank Commodity Price Data (Pink Sheet), Florian Habermacher (UNISG) Carbon Tax w(/o) Future Liquefaction 20 Sept 2012 21 / 21

#### Time Path, Monopolistic Supply (BAU)



20 Sept 2012 21 / 21

Florian Habermacher (UNI

#### Tax effect, coal (Tax vs. BAU)



#### Tax effect, coal (Tax in CTL-scenario)



#### Tax effect, coal (Tax in CTL-scenario)

