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Abstract

Heterogeneity is a theme acquiring considerable importance in the energy economic
literature from both a modelling and policy-making perspective, which can now be
addressed due to increasingly detailed data made available for relatively long period
of time. Motivated by the goal of developing the new industrial energy consumption
model adopted by the UK government Department of Business, Energy and Industrial
Strategy (BEIS), we propose the first cointegration analysis that shows the applicability
of a consistent system approach to the estimation of fuel demand elasticities with
respect to relative own and cross-price prices and scale effects at a disaggregated
industrial level. Our estimates not only show considerable heterogeneity across
industrial subsectors but also show that fuel demand for the industrial sector as a
whole is considerably more elastic than most estimated presented in the literature
finding which has direct relevance for the policies aimed at influencing industrial fuel
consumption through fuel switching.

Keywords: fuel demand; energy demand; elasticities; industrial subsectors, industrial
sector; cointegration.



1 Introduction

A considerable amount of energy is used by the industrial sector across the world, yet
econometric studies on industrial energy demand are surprisingly scarce, as argued in
Bernstein and Madlener (2015). Following Pesaran et al. (1999), who advocated
estimation of energy demand functions on a set of consumers that is as homogeneous
as possible, the aim of this paper is to demonstrate the implementation of a
cointegration approach to the estimation of fuel demand at a disaggregate level by
making use of a standard dataset, collected by most national offices for statistics
across the world (Eurostat 2018). Our choice to explicitly estimate the long-run
equilibrium relationship between energy consumption and its main determinants
enables us to investigate a number of key questions related to: 1) the impact on price
and scale effects on demand for energy fuels; and 2) the level of heterogeneity across

industrial subsectors which have been typically aggregated in other studies.

Our conclusions are important not only from a modelling perspective, in a way which
we would expect to be replicated for other countries, but also, and probably more
tangibly, for policy-making purposes. In fact, the elasticities we present in this paper
are key for policies that rely on price signals, e.g. the EU ETS or the UK climate change
levy, to achieve fuel substitution in a way which helps steering the economy towards
decarbonisation. As a matter of fact, the analysis developed in this paper has been
motivated by the very goal of developing the new industrial energy demand model
adopted by the UK government Department of Business, Energy and Industrial

Strategy (BEIS), as part of their wider Energy Demand Model.

The structure of the paper is as follows. After describing our methodological approach
in Section 2, we discuss the data in Section 3, and in Section 4 we assess our results in
relation to unit root tests, cointegration analysis and estimation of fuel demand

equations. Section 5 concludes.



2. Methodological Approach
Our study starts with the implementation of unit root testing relying on standard ADF
and the Zivot and Andrews (ZA) (1992)" tests, with the latter allowing for one break in
the deterministic components at an unknown point in time. We selected the number
of lags in the testing equations based on the modified Akaike information criterion of
Ng and Perron (2001), as it is robust to the presence of negative MA components in
the error term, and chose the deterministic terms by assessing the Akaike and the
Bayesian information criteria in models that include an intercept only or an intercept
and a linear trend. Implementation of unit root testing is important as the
cointegrating Vector Autoregression (VAR) model briefly discussed below requires

variables to be integrated of order one, which is indeed confirmed by the tests.

Estimation of fuel demand for gas and electricity is implemented through a Vector
Autoregression (VAR) approach to model a system that describes the dynamics of fuel
shares, prices and energy consumption. Considering that we have n different fuels and
indicating by d the one that is dropped from estimation and used as numeraire, our

starting point is the static relationship between fuel share and its determinants
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of fuel j and ec; the level of energy consumption, @; is an intercept, Py is the fuel j
price and Py is the fuel d price, T;is a deterministic time trend and &;; is an error term
representing the deviations from equilibrium. This specification is similar to the one
deriving from a translog cost function, with the difference that we focus on the fuel
share rather than the cost share, and we follow Smith et al. (1998) in using the level
of energy consumption to capture the scale effect, instead of the industrial output

used for example by Urga and Walters (2003). We include a deterministic time trend

! ZA henceforth.



as a proxy for changes in the preferences for a specific fuel, technological innovation,
or any other factor influencing fuel shares beyond relative prices and energy
consumption level. We choose the logit transformation of fuel shares as dependent
variable for two reasons. First, with this transformation all estimated coefficients in
each share equation can be interpreted as elasticities of fuel consumption with
respect to the independent variables?, and second, the estimated system can readily
be employed to generate forecasts since the resulting fuel shares are by construction

bounded between zero and one.

Static formulations of fuel demands have several limitations as they ignore the
dynamics of the adjustment process in inter-fuel substitution, which in particular is
related to the costs of switching between fuels and the necessary modifications in the
energy-consuming stock. One way to tackle this issue is to implement joint models of
energy-consuming stock and energy consumption, as in Dubin and McFadden (1984),
although this is particularly challenging in the case of the industrial sector due to the
variety of uses energy is consumed for. An alternative option is to insert the static
model above within a framework that explicitly describes the dynamics towards the
equilibrium level in response to changes in the driving factors. This is essentially the
strategy followed by Urga and Walters (2003), who use an ARDL framework, and
Pesaran et al. (1999), who embed an interfuel substitution system similar to (1) in a
cointegrating VAR. We follow this latter strategy as it features all the typical
advantages of a system approach to estimation, as well as providing the ability to
rigorously identify the long-run equilibrium demand for fuel via the Johansen

procedure to estimate cointegrating vectors.

Our fuel share demand model can be succinctly written in its VECM representation as
p—1
AXt = <I)0 + aB,Xt_l + Z q)]AXt_] + uf (2)
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where X; is the vector of endogenous variables in the system, a is the mXxk matrix of

adjustment coefficients, B is the mXxk matrix of cointegrating vectors, both having as
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many rows as the number of endogenous variables in the system and as many
columns as the number of cointegrating relationships, ®, is a mX1 vector of

deterministic terms, and u, is a mXx1 vector of mean zero error terms.

Selection and estimation of the model specification is implemented in two steps. In
the first step, we look for evidence of long-run relationships by testing for
cointegration using the trace and the maximum eigenvalue tests of Johansen (1991).
As to the deterministic terms in the cointegrating vector we estimate both a model
with an intercept only and one with a restricted trend, following Johansen (1992), as
we have no strong reason to prefer one specification to the other. We select one lag
only in our VECMs given the limited size of the available sample, but also because this
choice turns out to be enough to remove any residual autocorrelation. After
establishing the evidence for two cointegrating relationships, in the second step we
start by estimating models that are as general as possible, with two cointegrating
vectors including fuels shares, relative fuel prices and energy consumption, and
allowing for substitution to happen through cross-price elasticities and adjustment
coefficients, i.e. a fuel share adjusting to the disequilibrium in the demand for another
fuel as well as to that of its own demand. In determining the final specification, we
impose only one assumption on the long-run relationship, that is a negative own-price
elasticity in conformity with standard economic theory, but we leave unrestricted the
cross-price elasticities as different signs might reflect complementarities as well as
substitutability between fuels. As a consequence, if the own-price elasticity is not
negative we simplify the model by imposing a zero coefficient on the level of energy
consumption within the cointegrating relationship and, in case the sign issue persists,
also on the price of the other fuel. As discussed in Section 5, this sign issue occurs only
in two subsectors, in the case of Non-Ferrous Metals (NFM), where energy
consumption is dropped from the cointegrating vector, and Food, Beverages and

Tobacco (FBT), where cross-price elasticities have to be imposed equal to zero.

After estimating by Maximum Likelihood the VECMs including the cointegrating
vectors, we implement likelihood ratio tests to assess the statistical significance of the
variables on right-hand-side of the fuel share demand equation, their potential weak
exogeneity, and the evidence for equality of cross-price elasticities in the two
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cointegrating vectors, restriction that is incorporated in the final model if accepted.
We augment the model with pulse dummies when substantial isolated outliers remain
in the residuals, and study the residuals of the estimated VECMs to verify the absence
of serial correlation, of heteroscedasticity and of evident deviations from the

normality assumption.

3. Data
Our dataset includes four sets of fuel prices and fuel consumptions, observed at an
annual frequency between 1990 and 2014 for the eight industrial subsectors in the
UK, which are listed in Table Al of the Appendix. The total level of energy
consumption, which is computed as the sum of fuel consumption from data in BEIS
(2016a), takes into account fuels used for the production of heat. Fuel prices were
obtained by converting prices indices from BEIS (2016b), which incorporate all
relevant taxes (Climate Change Levy included), into price levels by using information
on the 2000 average fuel price. We then added the price of the EU ETS allowances
based on the carbon intensity of oil, coal and natural gas and the share of each
industrial subsector covered by the EU ETS to compute a time series for each fuel
price. All data were converted into indices, although this does not affect the value of

the coefficients from the estimation, as we take the logarithms of all variables.

In all eight subsectors, there is a specific fuel share that has been very small in size and
rather constant across time. We decide to exclude such fuel share from the model
since its inclusion cannot add information that is relevant to fuel substitution and may
instead complicate estimation of the system. As a consequence, coal was dropped in
the majority of the subsectors, namely CHE, ENV, FBT, PPP and TEX, while oil was
dropped in MIN, NFM and OTH. A key to the acronyms of the industrial subsectors
modelled in this study can be found in Table Al of the Appendix. Levels of
consumption of the four fuels in the subsectors modelled in this study and the
resulting total energy consumption can be seen in Figure Al and Figure A2 of the
Appendix, respectively. Figure A3 displays the log of the relative fuel prices that are

used in the modelling. In the figure, one can notice the difference between the time



plots for the prices in NFM, MIN and OTH, which are built using coal as numeraire, and

that for all the other subsectors where oil is used as numeraire.

4. Estimation results

5.1 Results from unit root tests

Our unit root testing procedure points at the variables used in the modelling, i.e. fuel
shares, relative fuel prices and energy consumption in UK industrial subsectors, being
integrated of order 1, with some series characterized by evident structural breaks.
More precisely, electricity shares appear to be integrated of order 1 based on ADF
tests in all but two subsectors — NFM and OTH — see Table A2a of the Appendix,
although one can conclude that electricity shares in these subsectors are integrated
of order 1 only after allowing for the presence of one break in trend through the
application of a ZA test — see Table A2d. Evidence of integration of order 1 in the gas
shares seems less strong — with this variable appearing to be integrated at least of
order 2 in four subsectors —see Table A2b —but again one can conclude that gas shares
in these four subsectors are integrated of order 1 based on results from the
application of a ZA test — see Table A2d. Also in the case of oil and coal shares, the ZA
tests suggests integration of order 1 in the two cases where the series appear to be
integrated at least of order 2 based on ADF tests — see Table A2c and see Table A2d.
Similar results are obtained in the case of the other three variables, i.e. relative price
of electricity and gas, and energy consumption, as one can see in Table A3 and Table
A4. The outcome from the unit root tests implies that we can proceed to test for the

existence of cointegration among the variables used in our study.

5.2 Results from cointegration analysis

Results from the cointegration tests, shown in Table A5 of the Appendix, points overall
at the existence of two cointegrating vectors among our variables. More precisely, the
maximum eigenvalue test suggests two cointegrating vectors in seven of the eight
subsectors, while in four subsectors, namely CHE, ENV, FBT and PPP, this finding is also

supported by the trace test. The trace test indicates one cointegrating vector in the



MIN subsectors, and more than two cointegrating vectors in the OTH and TEX sector”.
In the case of NFM, both the trace and the maximum eigenvalue statistics suggest one
cointegrating vectors. Agnolucci et al. (2017) report that cointegration evidence in the
NFM subsector differ from the results for all the other subsectors, a finding they
attributed to the fact that, contrary to other subsectors, there is no perfect match
between the definition of the NFM subsector in the DUKES and ONS datasets — see
Table Al of the Appendix. Given the rather robust and consistent evidence we
obtained from the other seven subsectors, we take the indication of one cointegrating
vector in NFM as a likely spurious finding, and we estimate a VECM with two

cointegrating vectors in all of the eight industrial subsectors.

The results from applying the Johansen approach to estimation of cointegrating
relationships are displayed in Table 1. First of all, we stress how estimates for the NFM
subsector are fairly similar to those for the other subsectors, with the exception of the
coefficient on the gas price in the gas demand equation, therefore leading us to
believe that our assumption of two cointegrating vectors also for this subsector is
reasonable. Statistical significance of the coefficients in the cointegrating vectors is
assessed by running Likelihood Ratio tests (see Table 2). We observe that estimates
for the own-price elasticities (for both electricity and gas) are highly significant in all
but the TEX subsector. Cross-price elasticities are not statistically significant in two
subsectors, ENV and OTH. Energy consumption and the linear deterministic trend are
always statistically significant. When considered jointly, all variables in the two
cointegrating vectors are highly statistically significant in all subsectors, providing in
this way a strong confirmation of the validity of our empirical model of the long-run
fuel share demand. While the two fuel shares of electricity and gas are assumed
endogenous by definition of demand function, it is interesting to explore whether the
other variables can be treated as weakly exogenous in the VECM environment, that is
whether it can be excluded that they also adjust to past departures from the long-run
equilibrium. To verify such property we run a Likelihood Ratio test on the joint weak
exogeneity of prices and energy consumption with respect to both cointegrating

relationships. We reject such hypothesis at 5% significance level in all but the NFM

*The higher probability of size distortions of the trace test in finite samples is highlighted in Litkepohl et al. (2001).
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subsector, again an exception which we attribute to the imperfect match between the

definition of the NFM subsector in the economic and the energy datasets (Table 2).

Table 3 displays the outcome from implementing standard diagnostic tests on the
VECMs used to produce the cointegrating vectors in Table 1. Results confirm the
overall validity of the selected models across subsectors. Indeed, residual
autocorrelation, as measured by the LM test, is evident only in the case of the TEX
subsector, although only at 5% significance level. Heteroscedasticity is never detected
by the White test, while deviation from normality emerges only in the MIN subsector,
probably due to remaining outliers not explicitly taken into account by the included

pulse dummies.



CHE ENV FBT MIN NFM OTH PPP TEX
Ele Gas Ele Gas Ele Gas Ele Gas Ele Gas Ele Gas Ele Gas Ele Gas
Electricity Price -0.22 | -0.47 | -0.74 | -0.08 | -0.49 -0.44 0.48 -0.67 0.66 -1.90 0.14 -0.61 0.32 -0.22 | -1.17
Gas Price -0.47 | -1.37 | -0.08 | -0.71 -0.67 | -0.52 | -1.68 0.66 -0.17 | -0.13 | -1.31 1.14 -1.61 | -1.17 | -2.40
Energy -0.69 2.12 0.45 1.16 -0.84 1.87 -1.56 0.38 -1.50 1.82 -0.62 1.52
Trend -0.01 0.05 0.05 -0.01 -0.03 | -0.06
Constant 440 |-16.62 | -2.95 | -9.22 | -0.55 | -0.08 5.94 | -14.10 | 0.66 -1.90 | 15.75 | -3.13 | 11.29 | -13.82 | 2.63 -8.76

Table 1. Long-run elasticities from the cointegrating vectors of the VECMs. A key to the acronyms of the industrial subsectors can be seen in Table Al.

CHE ENV FBT MIN NFM OTH PPP TEX

Own price - electricity 480" | 7.86"" 7.88" | 841" 705" | 218577 931" 0.52
Own price - gas 323277 12.25%) 5.58") 526" | 22.69"7 | 16.84"7 | 133777 ] 10.64™"
Cross price 9.05"" 0.08 13.30"7 | 5.30™" 1.63 | 16.65" | 17.03"
Energy 52.5777 | 13.03" 16.60"" 44.76"7 | 13.23"7 | 9.00""
Trend 9.80"" | 22.39" 8.14""
All 57.97"7 | 34.28"| 955" | 56.42"7 | 38.558" | 82.00"" | 40.47"7| 50.91""
Exogeneity 37.23"7 | 26.62"7 | 17.72"7| 325117 4.84 | 38.92"7| 21537 34.73")

Table 2. Likelihood Ratio tests for significance of the coefficients in the cointegrating vectors. Significance level is indicated by: * (5%), ** (1%). A key to the
acronyms of the industrial subsectors can be seen in Table A1l.

CHE | ENV | FBT | MIN | NFM | OTH | PPP | TEX
Serial Correlation 0.14 | 0.94 | 0.24 | 0.29 | 0.79 | 0.72 | 0.13 | 0.05
Hetero 0.49 | 0.55 | 0.69 | 0.36 | 0.86 | 0.56 | 0.47 | 0.63
Non-normality 0.96 | 0.84 | 0.68 | 0.00 | 0.96 | 0.87 | 0.89 | 0.79

Table 3. p-values of diagnostic tests for the VECMs used to estimate the cointegrating vectors . A key to the acronyms of the industrial subsectors can be seen

in Table A1l.
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5. Conclusions
We estimated demand functions for different fuels by implementing the first
cointegration analysis at a disaggregated level, and we showed that plausible and
robust estimates of price elasticities can be obtained even from relatively short time
series using a parsimonious but careful application of the system approach to
cointegration analysis. As time goes by, we would expect to see the level of
disaggregation pursued here being applied to other countries to start building
evidence on fuel demand elasticities, which accounts for the peculiarities of firms
belonging to different industrial subsectors to help policy maker assess the impact of
energy, climate and industrial policies at the subsectoral level. Modelling a VECM for
each of the eight industrial subsectors we obtained a surprisingly uniform and
unequivocal evidence for the existence of two cointegrating relationships
representing demand for electricity and gas fuel. Compared to previous empirical
contributions our estimates present greater statistical significance, whether we
consider the whole cointegrating vectors in general or the own-price elasticity in
particular. As for the methodology we adopt, the validity and advantages of a system
approach to estimation is confirmed by the steady rejection of the weak exogeneity

hypothesis for energy prices and consumption across all subsectors.

Our results can be summarised in four points. First, the magnitude of electricity and
gas own-price elasticity, that is -0.77 and -1.22 on average respectively, is markedly
greater than the typical values reported in the existing empirical literature. There are
two possible explanations for such outcome: previous studies may suffer from
aggregation bias since they are based on coarser representations of the industrial
sector; our estimation focuses on long-run fuel demand functions, which are expected
to be more elastic as a result of substantial inter-fuel substitution costs. Second, we
obtained that price considerations are more important in gas than in electricity
consumption, confirming previous understanding in the field. Third, we found that
demand for gas is positively related to total energy consumption while the opposite
occurs for electricity demand, with this pattern being common to all subsectors,

therefore showing the relevance of scale effects in the determination of fuel
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consumption level. Fourth, and presumably our most important finding, we
uncovered substantial heterogeneity in the magnitude of own-price and cross-price
elasticity of fuel demands across the eight industrial subsectors. While this
heterogeneity is not new, the range of values we obtained is even wider than most
previous results, providing a warning to those studies that aggregate data under the
assumption of homogeneous coefficients across subsectors, like in panel data models.
In particular from the sign of cross-price elasticities it turned out that there is no clear
dominant evidence of substitutability over complementarity between fuels. This is
likely the consequence of important differences in the ability of firms to respond to
changes in prices, which is related to the specific characteristics of each subsector,
and in particular to the different degree to which electricity and gas are used for
different purposes across subsectors. This type of evidence clearly suggests a careful
assessment of the likely performance and effectiveness of energy policies that aim at
fostering certain fuel substitutions but that fail to account for these idiosyncratic

features of each industrial subsector.
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Appendix

| die::i‘f’i';r Description DUKES energy data |  ONS GVA data
SIC 2007 code SIC 2007 code
FBT Food, Beverages and Tobacco 10-12 10-12
TEX Textiles, Clothing, Leather and Footwear 13-15 13-15
PPP Pulp, Paper, Printing and Publishing 17-18 17-18
CHE Chemicals 20-21 20-21
MIN Non-Metallic Mineral products 8,23 8,23
ENV Engineering and Vehicles 25-30 25-30
NFM Non-Ferrous Metals 24.4, (excluding 24.4-5
24.46), 24.53, 24.54
OTH Other industries 16, 22,31-33,36-39 | 16, 22,31-33, 36-39

Table Al. Matching between energy consumption and economic activity data for the
industrial subsector assessed in our study.
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Levels Differences
Test Statistic Lags | tre/int Test Statistic Lags | tre/int
CHE -2.03 0 trend 417" 0 constant
ENV -1.18 2 constant -3.150 0 constant
FBT -2.29 0 trend -4.78 %) 0 constant
MIN -3.63" 0 trend -4.75"" 0 constant
NFM -1.72 0 trend -1.40 2 constant
OTH -1.97 0 trend -1.13 2 trend
PPP -3.01 0 trend -5.34 " 0 constant
TEX -2.79 0 trend -6.16 0 constant

Table A2a. Results from unit root tests for electricity share. A key to the acronyms of the
industrial subsectors can be seen in Table Al. Key: ** and *)indicate significance at the 99%
and 95% significance level, respectively.

Levels Differences
Test Statistic Lags | tre/int Test Statistic Lags | tre/int
CHE -1.52 0 constant 0.43 3 trend
ENV -1.22 0 constant -3.450) 0 constant
FBT -1.76 0 constant -2.86 2 trend
MIN -2.28 0 constant -2.26 2 constant
NFM -1.64 0 constant -2.39 2 constant
OTH -1.49 1 trend -2.76% 2 constant
PPP -1.85 3 trend -4.64"" 0 constant
TEX -1.71 1 constant -6.00 " 0 constant

Table A2b. Results from unit root tests for gas share. A key to the acronyms of the industrial
subsectors can be seen in Table A1. Key: **), %) and ) indicate significance at the 99%, 95%
and 90% significance level, respectively.

Levels Differences
Test Statistic Lags | tre/int Test Statistic Lags | tre/int
CHE -1.34 1 trend -6.56' 0 trend
ENV -1.39 2 constant -3.610 0 constant
FBT -1.08 0 constant -1.89 2 constant
MIN (COAL) -2.62 0| constant -5.14"" 0| constant
NFM (COAL) -0.89 2 constant -2.37 2 constant
OTH (COAL) -0.16 2 trend -6.21 0 trend
PPP -1.32 0 constant -4.99" 0 constant
TEX -2.11 0 trend -4.15 ) 0 constant

Table A2c. Results from unit root tests for coal/oil share. A key to the acronyms of the
industrial subsectors can be seen in Table Al. Key: ** and *' indicate significance at the 99%
and 95%, respectively.
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Statistic Lags | Break date Statistic Lags | Break date
Y -2.27 0 2012 -7.17‘::’ 1 2003
OTH -4.23 2 2008 -8.21"" 1 2006
CHE -4.48 0 1999 -10.88"" 1 2007
cas LFBT -3.68 4 2012 -5.53*‘:’ 2 2010
MIN -6.147 4 2007 -6.417") 0 2005
NFM -3.00 0 2003 -6.16"" 1 2003
olL FBT -4.16 5 2012 -6.59"" 2 2000
COAL | NFM -6.20"" 5 2008 -7.57"") 5 2005

Table A2d. Results from ZA unit root tests for shares appearing to be at least (I2) based on
ADF unit root tests. Acronyms of the sectors assessed in this study can be seen in Table Al in
the appendix. Key: %) and *in the superscripts indicates significance at the 99% and 95%
significance level.

Levels Differences
Test Statistic Lags | tre/int Test Statistic Lags | tre/int
CHE -2.85 0 trend -5.09"" 0 constant
ENV -2.84 0 trend -4.88"" 0| constant
FBT -2.88 0 trend -4.99) 0 constant
MIN (COAL) -3.41% 0 trend -6.67" 0| constant
NFM (COAL) -2.12 0 constant 4,53 0 constant
OTH (COAL) -2.22 0 constant -2.04 2 constant
PPP -2.91 0 trend -5.16" 0 constant
TEX -2.85 0 trend -4.80" 0 constant

Table A3a. Results from unit root tests for relative electricity price. A key to the acronyms of
the industrial subsectors can be seen in Table Al. Key: ** and *) indicate significance at the
99% and 95% significance level, respectively. Energy consumption in OTH is (1) based on the
ZA test — value of the statistics being -5.97 for the first difference of the series. Relative
electricity price in OTH is I(1) based on the ZA test — value of the statistics being -6.16 for the
first difference of the series.

Levels Differences
Test Statistic Lags | tre/int Test Statistic Lags | tre/int
CHE -1.96 2 trend -5.50"") 0 constant
ENV -1.97 2 trend -5.45) 0 constant
FBT -1.97 2 trend -5.49") 0 constant
MIN (COAL) -2.18 0 trend 4521 0| constant
NFM (COAL) -2.12 0 trend -5.377) 0| constant
OTH (COAL) -2.24 0 trend -5.53"7) 0| constant
PPP -1.96 2 trend -5.5207) 0 constant
TEX -1.97 2 trend -5.45) 0 constant

Table A3b. Results from unit root tests for relative gas price. A key to the acronyms of the
industrial subsectors can be seen in Table Al. Key: **) and **) indicate significance at the
99% and 95% significance level, respectively.
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Levels Differences
Test Statistic Lags | tre/int Test Statistic Lags | tre/int
CHE -1.39 0 trend -2.85% 3 constant
ENV -1.71 0 trend -3.75") 0 constant
FBT -2.25 0 trend -5.39") 0 constant
MIN (COAL) -3.21 0 trend -5.621") 0| constant
NFM (COAL) -0.21 0 trend -6.47") 0| constant
OTH (COAL) -1.70 0 trend -1.94 2 constant
PPP -1.69 0 trend -3.68" 0 constant
TEX -2.40 0 trend -5.721) 0 constant

Table Ada. Results from unit root tests for energy consumption. A key to the acronyms of
the industrial subsectors can be seen in Table Al. Key: **'indicates significance at the 99%
significance level. Energy consumption in OTH is I(1) based on the ZA test — value of the

statistics being -5.97 for the first difference of the series.
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Trace

Max Eigenvalue

Ho H, Atrace p-value | Hy H, Amax p-value
CHE r=0 | r>1 102.76 | 0.00"7 [r=0 |r=1 52.38 | 0.00""
r<l | r>2 5038 | 0.03|r=1 |r=2 26.43 0.07""
r<2 >3 23.95 020|r=2 |r=3 16.19 0.21
ENV =0 >1 86.28 | 0.000" |r=0 |r=1 4120 0.01™"
r<l | r>2 4508 | 009" [r=1 |r=2 25.03 0.10%
r<2 >3 20.05 042 |r=2 |r=3 14.08 0.36
FBT 0 >1 64.67 | 0.00°" |r=0 |r=1 31.87| 0.01""
r<i >2 3280 | 002" |r=1 |r=2 21.21 0.05""
<2 >3 11.59 018 r=2 |r=3 9.61 0.24
MIN 0 >1 98.85| 0.01"7|r=0 |r=1 40.28 0.03""
r<i >2 58.56 013 |r=1 |[r=2 31.56 0.06"
<2 >3 27.00 0.68|r=2 |r=3 13.55 0.76
NFM 0 >1 62.88| 0.06"|r=0 |r=1 29.58 0.10%
r<i >?2 33.29 032|r=1 |r=2 19.15 0.30
<2 >3 14.14 0.65|r=2 |r=3 8.01 0.82
OTH 0 >1 115.24 | 0.00"7 [r=0 |r=1 50.34 | 0.00""
r<i >2 64.89 | 0.00°" |r=1 |r=2 25.54 0.09"
) >3 3935 000" |r=2 |r=3 17.17 0.16
PPP 0 | r>1 105.75 | 0.00"7 [r=0 |r=1 4559 | 0.00""
r<l | r>2 60.16 | 0.00"" |r=1 |r=2 34.14 | 0.01""
<2 | r>3 26.02 013 |r=2 |r=3 16.62 0.19
TEX 0 | r>1 12239 | 0.00"7 [ r=0 |r=1 48.12| 0.00"™"
r<l | r>2 7427 | 001" |r=1 |r=2 29.67 0.10%
r<2 | r>3 4460 | 003" |r=2 |r=3 19.14 0.30

Table A5. Results from the trace and max eigenvalue cointegration tests. Key: (**) in the
superscripts indicates significance at the 1% level; (*) indicates significance at the 5% level;
(+) indicates significance at the 10% level. A key to the acronyms of the industrial subsectors
can be seen in Table Al.
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Figure A1 Consumption of coal, gas, electricity and oil, expressed in million therms, for each subsector. A key to the acronyms of the industrial subsectors
can be seen in Table Al.
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Figure A2. Energy consumption in million therms. A key to the acronyms of the industrial subsectors can be seen in Table Al.
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Figure A3. Relative fuel prices in each subsector. A key to the acronyms of the industrial subsectors can be seen in Table Al.
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