

Energy demand reduction

Professor John Barrett OBE University of Leeds

Decarbonisation, removal and energy demand reduction

Energy demand reduction potential

Where do the savings come from?

Four broad categories change:

- Efficiency improvements insulation, products, processes etc;
- Efficiencies from energy system change notably electrification of vehicles and heating;
- Systemic change in other sectors, notably to:
 - public and active transport,
 - circular economy for energy-intensive materials,
 - low meat food systems.
- Reduced consumption, especially by high consumers.

Efficiency and sufficiency

Source: Barrett et al, 2022

We can reduce the scale of change needed in the electricity system

Source: Barrett et al, 2022

Energy demand target

Percentage reduction in energy demand by 2050 (2020 baseline) in 7 UK decarbonisation scenarios. CCC - BP = the CCC Balance Pathway. CCC - H = Headwinds. CCC - WE = Widespread Engagement. CCC - WI = Widespread Innovation. CCC - T = Tailwinds. PLEF - SH = Positive Low Energy Futures Shift demand scenario. PLEF - TR = Positive Low Energy Futures Transform Demand scenario.

Source: Betts Davies et al, 2024