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Eoegyand Context

The growing number of electric vehicles (EVs) on our streets has brought a
significant concern regarding the large quantity of retired EV batteries. To . Use battery as a stationary

. . . . . e . storage while it’s on the EV
decrease the environment pollution and increase economic benefits, utilizing
second life applications for these batteries is essential. Gl

Research gaps

Take batteries out of EVs,

« There is no technical and economic analysis of using second-life reassemble batteries, and 3

First life as

EV batteries for community microgrids with renewable energy an EV battery use as a stationary storage
sources. 1 EEE E"i"il
« There is no technical and economic analysis of using second-life ® ®

EV batteries for load frequency control.
4 Recycle batteries and
new batteries are made

* The control algorithms for second-life EV batteries for both

applications need to be developed. ﬁ"il?

» The factors that affect the economic benefits and technical
performance of second-life batteries for both applications need to

be analysed. Circular economy of EV batteries (4 stages)
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Aim to investigate the technical and economic feasibility of using SLBs for
community microgrids and ancillary services.

Overall Aim and Individual Objectives

1. To evaluate the technical and economic feasibility of utilizing second-life EV batteries for community

microgrids with renewable energy sources (application 1).

2. To evaluate the technical and economic feasibility of utilizing second-life EV batteries for load

frequency control (application 2).

3. To develop the most effective control algorithms for utilizing second-life EV batteries for both

applications (application 1 and 2).

4. To analyse the factors that affect the economic benefits and technical performance of second-life

batteries for both applications (application 1 and 2).
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== ) Methodology approach — Block diagram
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Time-based control

Battery action schedule :

p. — {PChar t = toff—peak
5 Pps U= tyeak
Total savings:

(Pdisc Cpeak At — Pchar Coffpeak At)

Electricity prices in Cranfield University
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Optimisation based control

Objective function: 2

Ctot = min Z( Cimp Eimp + Cexp Eexp)
i=1

Constraints:

Eimp (l) + Esolar (l) + Edis (l) = Eexp (i)+Eload (l) + Echar (l)

Ep (L) = Ep (i - 1) + Echar (L) — Egis (L)

Echar = Pehartn

Pchar t

Edisc -

Egriltigr < Echar (l) < Zr}llcg;
Ef < Eqis (D) < ERS

Ls

RN < By (i) < EJS

imp imp

EZY < Eppp (1) < EZSY

Methodology approach for application 1- Community
microgrids with renewable energy sources

System’s energy

| balance equation

| Batterie's energy
1 balance equation

| Batterie’s charging and

discharging losses

| Boundaries for each

input factor



Case Study 1 - Community microgrids with renewable
energy sources

Part of an IUK project: SLB4ComEU

Project funded by IUK (October 2010 to July 2021) with Brill Power Ltd and AceOn Group Ltd.

The IUK project has been working on the reassembling of batteries from 1 Cranfield electric bus
and installing the second-life batteries at Cranfield DARTeC building and total capacity is

100kWh.
The daily electricity demand and solar generation data in Cranfield University are also collected.

s B
Stationary energy storage Electricity buses from Cranfield University



Methodology for application 2 - LFC

Cranfield
University

Electricity system Bid in the trading
operator test platform and be
stationary energy the most
storage economical tender

Provide stationary
energy storage
(SLBs)

Getting paid

« To be paid for using battery energy storage for load frequency control in the UK is through
participation in the National Grid's Balancing Mechanism (BM).

« Battery energy storage providers can bid to provide frequency response services to the
BM and get paid for their participation.

« The residual value versus remaining life cycles is used to show the feasibility of second-life
applications.

R: Residual value
R=—-a+f—n a: EV battery residual value

B: BESS saving

nN: reengineering cost



sy |  Case Study 2 - LFC

Use SLBs for LFR (100kWh)

« LFC price: 0.002£/kWh/h
« Assumption: 260 cycle/year (1 cycle/workday)
« Saving/day: 0.48£

March 2021 Primary Secondary High

Price band (E/MW/h range) Y&I\L;Vrﬂ;e \é&l\l;vrg)e \Z&I\l;vrﬂf
Oto2 167,097 164,768 1,938
2to4 85,242 26 191,061
4106 35,614 27,150 183,258
6t08 6,077 0 8,728
Greater than 8 2,336 2 7,926
Total volume 296.4 GWh 191.9 GWh 392.9 GWh
Cost 0.80 £m 0.38 £m 1.60 £m
Total Frequency Response Holding Volume 881.2 GWh
Total Frequency Response Holding Cost 2.78 £m

March 2021 UK LFC market information



Key findings -1 Optimised charging and discharging profile
(100kWh battery):

Time-based charging and
discharging profile (100kWh battery): 10
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o One day in Spring is used for example



Total net savings/NPV(£)
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Key findings -1
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Time-based control

Optimisation-based control

« Total net saving vs. remaining life cycles (When the internal resistance is the same at 0.2Q)/
0.4Q/ 0.6Q), the comparison between different SLB costs, red lines are the results from
optimization-based control, black lines are the results from time-based control)



Key findings - 2

Cranfield
University

25000
Use SLBs for LFC (100kWh) V battery 10000
——Application 1: Time-based
15000
SLBS —e—Application 1: Optimisation
. . 10000 -
« Battery internal resistance: 0.2Q Application 2: LFC o
5000 =
- Battery reengineering cost: 6000£ o
6000 0 g
-5000
Stage 3 (remaining cycle): 10000
e Linear: 3018 - 4700 15000
¢ Op 2636 = 4750 Remaining cycle 20000
« LFC:2500-4790 Techno-economic model represented by residual value vs. remaining cycle
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Conclusion and discussion

» |t presents a comprehensive analysis of the economic feasibility of using second-life EV batteries as stationary energy
storage. The study examines the economic benefits of three different control algorithms: time-based control,
optimization-based control, and load frequency control, to manage the local generation, energy demand, and battery
charging and discharging.

« The study presents a method for evaluating the economic value of second-life EV batteries based on the total residual
value versus remaining life cycles. This method provides a new perspective on the residual value of second-life EV
batteries throughout their lifespan, from their initial use as EV batteries to their second life and eventual recycling.

« The findings suggest that load frequency control is the most feasible and economically beneficial algorithm, followed
by optimization-based control and time-based control. These insights can inform the development of more efficient
and cost-effective in the future.

12
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