Net Zero Market Design – Views from the Electricity System Operator

David Wildash Acting Head of Markets

ESO's Net Zero Market Reform programme is assessing how GB electricity markets should be redesigned to achieve net zero cost-efficiently

There is a need to invest at unprecedented scale and pace There is a need to manage dramatic energy imbalances with **flexible and firm technologies** across both supply and demand

Investment needs to be ramped up significantly across the electricity system

Capacity Build and Retirements: Leading the Way

- Massive scale up of investment in low carbon renewables needed
- Market design and policy framework must also deliver optimal ratio of renewable and flexible/firm resources (on both supply and demand sides) if a cost-optimal power mix is to be achieved.

Most years have over 10GW of new build with the 2030-35 period seeing a sustained build out of 15GW pa. This presents a significant challenge for the market.

There is a need to manage dramatic imbalances with flexible and firm technologies across both supply and demand

nationalgridESO

-150

Our deeper analysis of locational and flexibility issues show that the current market was not designed for net zero and left unchanged will impose excessive costs to consumers.

- 1. Constraint costs are rising at a dramatic and accelerating rate
- 2. **Balancing** the network is becoming **more challenging** and requires increasing levels of inefficient redispatch
- 3. Interconnectors and storage are at times exacerbating constraints
- 4. Current market design does not unlock the full potential of flexibility

These issues are arising because the wholesale market price is missing a key component: dynamic real-time locational signals

Our most recent estimates show that constraint costs will continue to rise at a rapid rate, despite network reinforcement

Modelled Constraint Costs after NOA7 / NOA7 Refresh Optimal Reinforcements

With higher renewables penetration, the need for ESO redispatch has markedly outgrown the residual balancer role originally envisaged

SO balancing as proportion of national demand¹ (%) vs renewable share of generation

The single national price is creating perverse incentives for flexible assets crucial to net zero

Interconnector flows under status quo national pricing

- Status quo market design is causing **storage** and **interconnector** behaviour that can aggravate grid constraints
- Projected capacity increase to 2035 (Leading the Way, FES 2021):
 - Interconnectors: 7.1 GW \rightarrow 26.8 GW
 - Battery Storage: 4.6 GW \rightarrow 23.4 GW

The single national price is also creating inaccurate signals for demand to respond

Nodal pricing would address critical issues in the current design, and sets up an enduring foundation for net zero

- 1. Efficient dispatch reduces balancing costs
- 2. Provides **correct signals** to interconnectors and storage
- Delivers accurate locational price signals (dispatch and siting) needed to realise demand side value