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Why the focus on heat is important?
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« How different possible scenarios for the future of the gas grid will affect the
cost, infrastructure requirement and system-wide implications of
decarbonising heating in buildings?

« How does meeting emission mitigation targets for heating interact with
energy security policy goals?

Possible futures for the

LP/MP gas grid
Full electrification (No Conversion of the . .
gas grid) gas grid to H, Hybrid heat pump Greener gas grid
Electrification w/wo grid Partial conversion of Hybrid H,/Gas Injecting low carbon
integrated heat pumps gas grid to H, boiler with heat pump gas to the grid




Imperial College Taftan framework
London

Heating demand

in buildings h

_... Buildings located
i on the gas grid

End-use heating
S Demand
Resources Distribution networks technologies
e A i —— Heat
o ! Hydrogen
b ' Regular power Powar
¥ ', demand from all
P " sj::j:; roma I ——  Methane
| -- O —w
Electricity transmission & B — Renewable
——* o T sources
distribution network i [ -
b ', Power demand i ——— Fossilfuels
¥ | fomEv Ay [Biomass
P i =——— Uranium
L

i -]-

Hydrogen network —'—'—"'

Natural gas network

Buildings located
off the gas grid

End-use heating technologies




. Taftan framework: Model outputs
Imperial College

London

100% electrification - = r(\:lggllear

: ‘ [ lInterconn. (FR, NL)
I CCGT-PostCCS

[ | Onshore wind
I Offshore wind

| |Solar PV

I BECCS

[ | Biomass thermal plant
I ccGT

B ocGT

[ Interconn. (IE)
I Pumped Hydro

[T | Lead-acid battery

----- Power demand w/o heat

Power grid dispatch profile in 2050 (GW)

© P. Hoseinpoori-Imperial College London



Imperial College Taftan framework: Model outputs

London
Gas grid dispatch profile (GW)
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Results: Total system cost and cost of CO, avoided
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Results: Demand for resources
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Results: Demand for biomass
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Results: Sensitivity analysis
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Results: CCS network
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Capacity required in power & gas grid (GW)
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Results: Sensitivity analysis
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Peak power / Hydrogen demand (GW)
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« Overcommitting to one energy vector will introduce reliability and availability
risks to security of supply.

« Proper combination of different strategies could provide the opportunity for
diversification of heating portfolio as resources.

« The level of investment required in all the scenarios are relatively close and
determining the role of low carbon gases and electrification for decarbonising
heating is better guided by the trade off between short-term reliability risks
and long-term availability risks

« System-wide factors such as availability of biomass resources and natural

gas, as well as availability and rate of deployment of CCS are key determinant
in the transition pathway and the technology mix adopted.
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Smart electrification
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