Understanding overlapping climate policies:
Internal carbon leakage and the punctured waterbed

Robert Ritz
Cambridge University

Joint work with Grischa Perino (Hamburg) and Arthur van Benthem (Wharton)

BIEE Research Conference 2021
Motivation: Overlapping climate policies

Carbon pricing often involves multiple jurisdictions

- EU ETS, Regional Greenhouse Gas Initiative (RGGI), California-Québec cap-and-trade, Canada minimum carbon tax

Additional unilateral policies often overlap with carbon price

- Unilateral carbon price
- Coal phase-out
- Renewable subsidies
- Energy-efficiency program
- Aviation tax

What is the climate benefit of such overlapping policies?
Contribution of this paper

Integrated approach

- Wide range of overlapping climate policies
- Almost all types of carbon-pricing systems

Carbon market

- Textbook ETS: Fixed emissions cap \(\Rightarrow\) “waterbed effect” is 100%
- Real world: Flexibility mechanisms with “punctured” waterbed
 - Post-2018 EU ETS Market Stability Reserve
 - Price corridors in RGGI, California, new UK ETS
 \(\Rightarrow\) Now overlapping policy may have a climate benefit

Product market

- Coal phase-out cuts domestic emissions by 1 tCO₂ but (say) raises imported emissions by 1 tCO₂—“internal carbon leakage” of 100%
 - Pre-2018 EU ETS: Internal leakage did not matter so underresearched
 - More important than “external” leakage for e.g. aviation, electricity

\(\Rightarrow\) Climate benefit driven by waterbed effect & internal carbon leakage
2018 EU ETS reform was motivated partly by “complementary” policies:

“the Market Stability Reserve will also enhance synergy with other climate and energy policies”
— European Parliament and Council

This paper:

- Punctured waterbed raises the stakes:
 - Some unilateral policies are truly complementary in that they induce further emissions reductions elsewhere in the system...
 - But other policies now backfire due to internal carbon leakage...

- Practical guidance for 25 combinations of overlapping policy instruments and types of carbon-pricing designs
Plan for today’s talk

1. Conceptual framework
2. Product market: Internal carbon leakage
3. Carbon market: Waterbed effect
4. Empirical illustrations
Conceptual framework

- **System-wide carbon price**: $\tau = (\tau_1, \tau_2)$
- **Overlapping policy**: Reduces jurisdiction i’s *domestic* emissions demand, $\Delta e_{it} < 0$ and $\Delta e_i \equiv \Delta e_{i1} + \Delta e_{i2} < 0$ (fixed τ)
 \implies What is its equilibrium impact on emissions, $\Delta e^* \equiv \Delta e_1^* + \Delta e_2^*$?
- **Internal carbon leakage**: $L_{it} \equiv -\Delta e_{-it}/\Delta e_{it}$ (fixed τ)
- **Waterbed effect**: $W \equiv 1 - \Delta e^*/\Delta e$ (equilibrium τ)
 - $W = 1$ with fixed emissions cap, $\Delta e^* \equiv 0$
 - $W = 0$ with simple carbon tax

Lemma 1

Equilibrium change in long-run emissions due to i’s unilateral policy is:

$$\Delta e^* = [1 - L_i][1 - W]\Delta e_i,$$

where L_i is the average internal carbon leakage across both periods.
Product market: Internal carbon leakage

- Perfect competition in product market, with two jurisdictions
 - Heterogeneity: Production cost, emissions intensity, abatement

Proposition 1

Supply-side policy has positive internal leakage, $L_i > 0$ (even $L_i > 1$)
- Unilateral carbon price (e.g. UK price floor for power generation)
- Reduction in emissions-intensive production (e.g. coal phase-out)

Proposition 2

Demand-side policy has negative internal leakage, $L_i < 0$
- Renewables support procures extra zero-carbon generation
- Energy-efficiency program cuts emissions demand
- Carbon consumption tax

Intuition: Former leads to substitution; latter displaces imports
- Simple formulae for L_i in paper, straightforward to calibrate
Carbon market: Waterbed effect

Flexibility mechanisms based on past allowance prices
- Carbon taxes, pre-2018 EU ETS, new UK ETS, California, RGGI
- Allowance supply in period 2 depends on carbon price in period 1
- Allowance demand shifted downwards by i’s overlapping policy

Proposition 3

$$W = \frac{\varepsilon \text{ of allowance demand}}{\varepsilon \text{ of allowance demand} + \varepsilon \text{ of allowance supply}} \in [0, 1]$$

is independent of specifics of overlapping policy and internal leakage

⇒ Classic principle of tax incidence (Jenkin 1872; Weyl-Fabinger 2013)

Flexibility mechanisms based on past allowance banking
- Post-2018 EU ETS Market Stability Reserve
- Very complex: Waterbed depends on timing of overlapping policy, whether it is anticipated, etc. (see Proposition 4)
_framework: Emissions reduction rate $R_i \equiv \frac{\Delta e^*_i}{\Delta e_i} = [1 - L_i][1 - W]$
Supply-side overlapping policies can yield a climate benefit ($R_i > 0$)
but they can backfire if imports are sufficiently “dirty” \((R_i < 0)\)...
... while demand-side policies may be truly complementary ($R_i > 1$)