

Modelling the New Model: The electricity wholesale market after the Helm Review

Richard Green

BIEE Seminar, 7 February 2018

This is a tidied-up, slightly edited, version of the slides presented at the seminar, with thanks to attendees for helpful suggestions. Use the mouse on the printed bubbles to see my comments

© Imperial College Business School

The Helm Review

A brief, selective, summary

- Complexity and winner-picking have increased costs
- Capacity auction (based on Equivalent Firm Power) is the most efficient way to meet security of supply
- Carbon tax (economy-wide, with border adjustment) is the most efficient way to meet carbon targets
 - Alternatively, add a carbon-constrained second stage to the capacity auction
- Network regulation should be reformed
 - System Operators would tender for many functions
- Suppliers should compete on a published supply margin and pass through all other costs transparently

Three technological trends

(mostly) Chapter 6 of the Review

© Imperial College Business School

Electricity Generation

Chapter 7 of the Review

© Imperial College Business School

The wholesale market

Chapter 7 of the Review

- Capacity costs will rise relative to running costs
- Much low-carbon output is effectively must-run
- Surplus output leads to zero or negative prices
- Intermittent wind and solar plant needs back-up
- Gas plants will see falling load factors
- Can costs be recovered in the energy market?

The EFP Auction

- Government / System Operator sets capacity target
- Generators offer Equivalent Firm Power

How do you define "EFP"?	"Central balancing"	"Self-balancing"
Generators sell:	De-rated capacity	Firm capacity
Back-up is contracted by:	System Operator	Generators

What could we expect in the wholesale market?

Principles of supply and demand

Demand and Supply

Prices reflect Marginal Costs

British Energy Prices

per MWh of electricity

Source: ElectricInsights.co.uk

Load-duration and Capacity

Imperial College

BUSINESS SCHOOL

German Energy Prices: The Merit Order Effect

Source: Green and Staffell, Oxrep, 2016

Demand and Supply

The merit order effect

\bigcirc

Imperial College London BUSINESS SCHOOL

Demand and Supply

The merit order effect

Capacity and Load

Generators' Load Factors

UK-wide, including Northern Ireland

Capacity and Peak Demand

Great Britain

Modelling the future

The energy market is here for the long term...

A simple model

- Merit order stack with nuclear, biomass, CCGT, OCGT, diesel, load-shedding
- Costs based on 2016 BEIS Generation Cost Report and central fuel price projections for 2025
- Weather pattern of 2011 for demand and renewable output
- Autarkic GB system, with daily storage cycle
- Adjust capacity for (approximate) break-even and low amounts of load-shedding with a VOLL-linked price
- Cap the energy price at a lower level, and assume EFC auction revenues will fill the gap

Buying Capacity or Energy?

Share of equilibrium revenues from capacity auction

The shape of future prices?

Price-duration curve, given model assumptions

Imperial College

BUSINESS SCHOOL

Generators' profit risk

Earlier work varying fuel prices

(the positions depend on particular cost assumptions; the shapes do not)

Optimal Portfolios

Given the previous risk profiles

Optimal Portfolios

Optional Fixed-price, Long-term, Contracts

What is electricity worth?

Some power stations are more equal than others

© Imperial College Business School

Dimensions of power

- Hirth *et al.* (*Renewable Energy,* 2015) doi:10.1016/j.renene.2014.08.065 have differentiated electricity in terms of:
 - Time
 - Location
 - Lead Time
- The most valuable power is typically produced:
 - When demand is high compared to supply
 - Geographically^{*} close to consumption
 - With little or no notice

* In fact, electrically close, which may not be quite the same

2011 demand and weather with 5 GW solar PV

Imperial College

BUSINESS SCHOOL

2011 demand and weather with 5 GW solar PV

Imperial College

BUSINESS SCHOOL

2011 demand and weather with 20 GW solar PV

Imperial College

BUSINESS SCHOOL

2011 demand and weather with 40 GW solar PV

Imperial College

BUSINESS SCHOOL

PV and Relative Prices

Great Britain, May-July

Output-weighted prices

Source: ElectricInsights.co.uk

What *is* the Equivalent Firm Capacity of Renewables?

2011 data only	Onshore Wind	Offshore Wind	PV
Annual Average Load Factor	27%	37%	10%
LF in top 1% of gross demands	27%	41%	1%
LF in top 1% of net demands	10%	13%	2%

What if we have an *Energy* Market?

How storage changes price-setting

© Imperial College Business School

A volatile market

A less volatile market

Source: Energinet.dk

 \bigcirc

Imperial College London BUSINESS SCHOOL

Supply and Demand

Supply and Demand

Finn's bathtub, from Forsund (2007) Hydropower Economics, Springer

 \bigcirc

Imperial College London BUSINESS SCHOOL

Reservoir Levels

Richard's bath-tub

Storage with generation

The maximum amount of storage is limited by its energy capacity (horizontal arrow) or the minimum price ratio ($P_2/P_1 > efficiency$)

Storage and price patterns

Indicative only

Imperial College

BUSINESS SCHOOL

My reactions:

- Even with a lot of zero-MC plant, positive power prices will dominate returns to generators
- Power prices linked to gas are risky for renewables, and they won't get much more from an EFP auction
- Storage could start to affect price patterns, but you need high power *and* energy capacity relative to RES capacity

Over to you...

Thank you!

© Imperial College Business School