Path dependence & path creation: roles for incumbents in the low carbon transition?

Peter J G Pearson
Imperial College London
p.j.pearson@imperial.ac.uk

BIEE Oxford 2016 Research Conference
Innovation and Disruption: the energy sector in transition
St John’s College, Oxford
21 -22 September 2016
Proposition: incumbents can play both negative & positive roles in the transition to low carbon technologies (LCTs)

- **Negative:** studies emphasise the *path dependent, locked-in* states of incumbent high carbon technologies & firms
 - Even if LCTs have attributes like those of existing technologies, apart from low carbon,
 - If incumbents respond to competitive pressures, LCTs & policy-makers face moving targets & delayed transitions.

- **Positive:** but other studies point to possibilities for incumbents to overcome lock-in & engage in *path creation & creative accumulation.*
 - So policies should be tuned to ensure that incumbents, as well as new entrants, engage rapidly with LCTs.
Path dependence & lock-in

- Long-term technological systems change can be *path dependent*, in that:
 - A system’s present & future evolution depends on the past sequence of events that led to its current state (David).
- So a system state may be *locked in* because of particular historical experiences
 - Creating barriers to moving to an alternative state,
 - Even though the conditions that led to that *lock-in* are not still relevant or no longer persist (QWERTY keyboard, etc.)
- Path dependence & lock-in are specially relevant for large technological energy systems (Hughes),
Increasing returns to technologies & institutions

- Arthur: 4 types of *increasing returns* that can lead to technological ‘lock-in’:
 - Scale, learning, adaptation & network effects
 - Which then yield cumulative socio-technical advantages for the incumbent technology
 - Impeding adoption of a potentially superior alternative

- North: increasing returns also apply to adoption of *institutions* (i.e. social rule systems).

- Pierson: increasing returns prevalent in *political institutions*, e.g. market or regulatory frameworks
 - Legally binding rule-systems become hard to change
 - & can allow incumbents to protect their interests

- Sydow *et al*: showed how *organisations can become path dependent*
Carbon lock-in & virtuous cycles

- Foxon: these insights suggest that analysing the co-evolution of technologies & institutions can inform how techno-institutional systems form & may get locked-in.

- Unruh: co-evolutionary processes & mutually reinforcing positive feedbacks led to the lock-in of current high carbon energy systems: *carbon lock-in*.

- But while co-evolutionary thinking highlights the difficulty in leaving a pathway supported by powerful actors.

- If increasing returns to adopting alternatives can be set off, this may lead to *virtuous cycles* of rapid change.

- So lock-in can be overcome but this usually requires strategic action by market actors &/or governments.
Path creation & avoidance of lock-in

- Garud & Karnoe: argued for *path-creation*: entrepreneurs may choose to depart from structures they jointly create.

- Historical studies suggest lock-in can be avoided
 - Through forming diverse technological options: Arapostathis et al: UK transition to natural gas after earlier experimentation
 - Ensuring promising options benefit from increasing returns & learning, to challenge dominant technologies.

- Need investment & other forms of support for risky R&D, demonstration & early stage commercialisation of LCTs
 - To enable them to travel along learning/experience curves, cut costs and create conditions for success.

- And policies to *destabilise* incumbents (Turnheim & Geels) & stimulate their innovative activities.
Path Dependence and Incumbents

- Studies of large technological systems in energy (Hughes, 1983, etc.), have shown positive & negative aspects of path dependency:

 - It shows advantages – how the natural gas system benefited from the earlier construction of a ‘backbone’ distribution pipeline system for LNG.
 - And how previous history constrained the development of the system before WWII to the point of ‘incoherence’
 - And was changed after nationalisation in 1948.
The ‘Sailing Ship Effect’ or ‘Last Gasp Effect of obsolescent technologies’ – occurs where competition from potentially superior new technologies stimulates improvements in incumbent technologies & firms.

Recent analyses of industries threatened by such ‘technological discontinuities’ offer insights into:

- Why incumbent technologies might show a sudden performance leap, deferring the transition.
- How current analyses may overestimate new entrants’ ability to disrupt incumbent firms; and
- Underestimate incumbents’ capacities to see the potential of new technologies & to integrate them with existing capabilities.
SSE and LGE

- As well as responding with performance enhancements, high carbon actors also lobby to resist institutional & policy changes favouring LCTs
 - Example: efforts of large German utilities in the 1990s to lobby for repeal of renewable energy FiTs (Kungl)
- So sailing ship & last gasp effects can act to delay or weaken transitions to LCTs.
- Note: the threat is partly from LCTs promoted by government rather than by market actors, incentives & pressures;
 - As yet not all such technologies have attributes that are superior &/or cost-competitive with incumbents,
 - Placing high carbon incumbents in a strong position to respond.
Potential Significance of SSE/LGE for Low Carbon Transitions

- Where incumbents significantly increase their competitiveness/protect their markets in response to new LCTs, this can:
 - Slow LCT uptake & penetration
 - Delaying travel down LCT experience curves
 - As LCTs chase incumbents’ shifting experience curves & costs
 - Raising policy costs via higher subsidies needed for competitive penetration
 - While forecasts that don’t allow for SSEs/LGEs could overestimate penetration
 - Requires proper attention to dynamic interactions between new & incumbent technologies, firms & the regime
 - Policies that address both new technologies & incumbents.
Research on competition between sailing & steamships by Gilfillan (1935), Graham (1956) Harley (1971) & Geels (2002) gave rise to the idea of the SSE

- Rothwell & Zegfeld (1985) claimed the presence of the SSE in the C19 alkali industry
- Utterback (1996): two C19 US cases: gas v. electric lighting (‘The gas companies came back against the Edison lamp … with the Welsbach mantle’) & mechanical v. harvested ice
- Cooper & Schendel (1976): 22 firms in 7 industries: ‘[i]n every industry studied, the old technology continued to be improved & reached its highest stage of technical development after the new technology was introduced.’
- Tripsas (2001) identified the effect as the ‘Last Gasp’ of an obsolescent technology
Incumbents and SSE/LGE

- Although some debate about whether all SSE/LGE instances stand up to scrutiny (Howells, 2002 – but see Arapostathis et al., 2013; Mendonca, 2013)
 - There is evidence that some firms try harder when new competition threatens their technological ascendancy.

- Growing management & innovation literatures have investigated performance & responses of incumbents facing radical technological innovation
 - Including recent studies by:
 - Arapostathis et al. (2013, 2014) - gas;
 - Furr & Snow (2013) – carburettors & fuel injection;
 - Dijk et al. (2016) & Sick et al. (2016) – automotive
 - Bergek et al. – turbines and automotive (2013)
An early SSE: the Incandescent Gas Mantle*

- UK gaslight use grew rapidly in 2nd half of 19th century (gas from coal)
- Gas lighting had seen incremental innovations, e.g. burner shape changes, better technical efficiency.
- In 1892, chemist Carl Auer (later von Welsbach) patented the incandescent mantle - a key innovation.
 - Mantles brighter, cleaner & cheaper; needed ‘a quarter of the gas consumption for a given degree of illumination’;
 - But early mantles expensive (Welsbach Company monopoly) & fragile;
 - Some gas engineers feared higher efficiency meant lower gas consumption (a common fear).

* Source: Arapostathis et al. (2013)
An early SSE: the Incandescent Gas Mantle

- But by early 1900s, cost of incandescent electric light (Edison/Swan patents, 1880) had fallen: now more competitive with gas

- Gas industry got together in 1901 to win legal fight against the British Welsbach mantle patent holder.
 - Cheaper & now sturdier gas mantles then widely adopted
 - Strengthening gaslight’s competitive position, enabling it to stay in the lighting market
 - Electric light not price competitive with gas light until 1920 (Fouquet & Pearson, 2006).

- So this was an early SSE.
Furr & Snow (2012), ‘Last gasp or crossing the chasm? The case of the carburettor technological discontinuity’

- Insufficient empirical research into the (LGE), so
- Examined carburettor manufacturers’ behaviour, when threatened by electronic fuel injection (EFI) from 1980 on,
- Four LGE hypotheses: when a new technology threatens
 1) An existing technology’s trajectory may show an LGE (sudden rise in performance), in which incumbents may:
 2) Improve their existing technology (‘try harder’); or
 3) Reconfigure & retreat to more efficient appl; or
 4) Recombine.
- A nuanced story: all of 2, 3 & 4 contributed to an LGE, but it came from more than just the standard ‘trying harder’.
Furr & Snow: Findings (i)

- While there were some improvements in standard carburettors,
- Two other unexpected responses contributed to an LGE
 - Some incumbents retreated & *reconfigured*, creating an ‘apparent LGE’: the performance ‘improvement’ came from the product retreating from less to more efficient applications in particular market segments
 - While others *recombined* - creation of hybrids between carburettors and EFI, contributed significantly to the LGE.
- While none leapt at once to EFI, only those that first invested in hybrids survived the transition to EFI.
- The LGE deferred the technology discontinuity for a time
Other automotive studies of the SSE/ LGE

- Sick et al. (2016) combine ideas of the SSE & of path dependence to show how such behaviour may be economically rational; & their patent-based evidence
 - Suggests that automotive OEMs of propulsion technologies have exhibited a temporary SSE
 - Via their focus on incremental innovations in traditional technologies as they respond to low carbon emission regulations & growing pressures for sustainability.
- Dijk et al. (2016): vehicle manufactures have tended to avoid costly/ risky radical technical innovation & regime disruption
 - Showing ‘an inclination to regime reproduction, or reorganization, partly by incorporating elements of disruptive niches into the regime.’ (including hybrids)
 - This they describe as an SSE.
Contest two explanations of the ‘creative destruction’ of incumbents from discontinuous technological change.

- These competence-based (Tushman & Anderson 1986) & market-based (Christensen 1997/2003) explanations,
- Suggest incumbents challenged only by ‘competence-destroying’ or ‘disruptive’ innovations (that disrupt their performance trajectory & value network as new attributes dominate competition)
- Making the firms’ knowledge bases or business models obsolete, leaving them vulnerable to attack.

Both explanations assume incumbents burdened with ‘core rigidities’ & ‘legacy of old technology’, thus

- Predicting that technological discontinuities open up possibilities for innovative ‘Attackers’ to grab market share.
Bergek et al. studied 2 competence destroying & potentially disruptive innovations (microturbines & electric vehicles)

1 sustaining innovation (CCGTs) & 1 competence-enhancing innovation (hybrid-electric vehicles).

In gas turbines, incumbents predicted to be challenged by new entrants developing microturbines.

In automobiles, Christensen said ‘electric vehicles have the smell of a disruptive technology’

But Bergek et al. found that these approaches tended to

- Overestimate new entrants’ ability to disrupt incumbents.
- Underestimate incumbents’ capacities to appreciate new technologies & integrate them with existing capabilities.
The attackers & their potentially disruptive innovations failed in both industries because:

- They didn’t meet performance demands in main markets
- Lack of ‘overshooting’ in main markets
- Industries’ embeddedness in hard to change large socio-technical systems (path dependence)

Predictions that incumbents only challenged by ‘competence -destroying’ or ‘disruptive’ innovations not born out. Firms’ abilities to compete depended on ability to managing the challenges of ‘creative accumulation’ (Pavitt 1986);

- Such firms rapidly fine-tune & evolve existing technologies;
- Acquire & develop new technologies & resources; &
- Integrate novel & existing knowledge into superior products & solutions.
Incumbents and innovation

- Bergek et al.’s study helps explain why some new energy technologies may find it harder to penetrate than anticipated.
- But also suggests that some incumbents are/ may become able to embrace new technologies, including via hybridisation.
- The common management & innovation literature assumption that incumbents can’t/won’t respond to technological discontinuities is increasingly contested.
 - Other studies suggest some incumbents have/ might develop innovation & creative accumulation capacities (Chandy & Tellis, 2000; Hill & Rothaermel, 2003; Hockerts & Wüstenhagen, 2010)
- And relying only on new entrants could take too long
 - History shows that energy transitions usually take multiple decades (Bento & Wilson, 2016; Fouquet, 2008, 2010; Hanna et al., 2015; Kander et al. 2013; Pearson, 2016; Sovacool, 2016) but may be quicker if the incumbent engages (Arapostathis et al., 2015).
Conclusion (i)

- The *path dependent, locked-in* states of incumbent high carbon technologies & firms means they can delay LCTs & the low carbon transition;

- And SSE/LGE studies suggest that some incumbents can fight back, at least for a while.

- So policies should address this by *destabilising* incumbents:
 - *Weakening the cultural, political, economic & technological dimensions of fossil-fuel related industries is just as important as stimulating green options* (Turnheim & Geels, 2012; also 2013).
 - And addressing perverse incentives, such as fossil fuel subsidies
Conclusion (ii)

- The paper argues that while incumbent technologies & firms can constrain & delay the success of low carbon technologies & policies.
- There are also positive opportunities for system actors & policies to overcome lock in, accumulate new competences & help create new low carbon paths.
- The urgency of the climate change challenge and the need for a rapid low carbon transition mean it is essential that incumbents, as well as new firms, engage rapidly with low carbon technologies & practices.
- Policies should be tuned to ensure this.
Acknowledgement & Sources

Acknowledgement: This presentation draws on research by the author & colleagues in the *Realising Transition Pathways project*, funded by EPSRC (Grant EP/K005316/1). I am responsible for all views.

Sources

http://dx.doi.org/10.1016/j.enpol.2012.04.030
Sources (ii)

http://www.ukerc.ac.uk/asset/ADA12E92-C1DC-4033-8CFA63AC9EA9FE59.6B438A7E-474E-437E-89025FD302A10A7C/

Sources (iii)

Sick, N. et al. (2016). The legend about sailing ship effects - Is it true or false? The example of cleaner propulsion technologies diffusion in the automotive industry. Journal of Cleaner Production 137, 405-413

