Modelling Long-term Carbon Abatement Scenarios with UK MARKAL

Dr Neil Strachan & Ramachandran Kannan
Policy Studies Institute

6th BIEE Academic Conference, Oxford
20-21 September 2006
Outline

- Introduction
- Modelling and Results
- Comment and Interpretation
- Discussion
2006 UK MARKAL model

- MARKet ALLocation dynamic optimization model
- Dynamic optimization based on life-cycle costs of competing technologies and pathways
- Consistent and flexible what-if framework
 - Updated technology data
 - Resource supply curves (domestic and import)
 - Detailed infrastructure representation
 - Detailed technology pathways
 - nuclear cycles, biomass, hydrogen, refining,
 - Electricity sector
 - Grid representation, CO$_2$ storage, micro-gen
 - End-use detail
 - Industry, transport, residential, service sector
 - Full MACRO module
 - Demand response; GDP impacts
Modelling principles

• Openness and transparency
 - Explicit assumptions and justifications

• Fully documented data sources
 - Validation sought from stakeholders

• Explicit sensitivity and uncertainty analysis
 - Thresholds & tipping points that favor one technology pathway or another
 - Important interactions and tradeoffs
 - Flexibility available in meeting goals
 - Robustness of results or outcomes

• Construction of consistent and policy relevant scenarios for evaluating the UK energy system
Model and data validation

- Model reports and documentation made available at: www.ukerc.ac.uk/content/view/142/112
- Stakeholder workshops
 - Electricity generation: DTI, 10th April 2006
 - Road transportation: DfT, 16th March 2006
- Bilateral peer reviews
 - Hydrogen: David Joffe, Imperial College and UKSHEC
 - Nuclear: Paul Howarth, Dalton Institute, University of Manchester
 - Biomass: Ausillio Bauen, Imperial College and TSEC BIOSYS
 - Carbon capture: David Reiner, University of Cambridge and UKCCSC
- Data sensitivity analysis
 - Derek Smith, PSI Visiting Fellow
- Initial model peer review
 - Gerard Martinus, ECN Policy Studies, Netherlands
CAVEAT 1

DRAFT RESULTS
Input Summary for MARKAL Base-case and 60% CO₂ Constrain Scenario

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value / Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time frame</td>
<td>2000-2050, in 5 yearly intervals</td>
</tr>
</tbody>
</table>
| Discount rate | Global 10%: Market investment rate
 End-use sectors 25%: Increased payback period requirements |
| Fuel prices | DTI (2006) Base import level; import and domestic stepped supply curves |
| Energy demands | DTI (2006): Includes CCP and CCPR through 2020; low growth projection through 2070 |
| Calibration | DUKES (2005): Final energy, primary energy, CO₂ emissions, electricity generation, fuel resources, aggregate and sectoral disaggregation (within 2%) |
| Sectoral coverage | Industry (sub-sectors include chemicals, iron and steel, paper and pulp, non ferrous metals and other industry), services, residential, transport, agriculture, own energy industry use
 Non-energy fuel use not considered |
| Load profiles | Actual year 2000 electricity and heat load profiles (National Grid, 2006) |
| Taxation and policy measures | Included: CCL, hydrocarbon duty, transport fuel duty
 Not included EU ETS, LCP directive, and renewables targets (electricity and road) |
| Emissions | SO₂ & CO₂ additionally tracked by sector (electricity separately, or assigned to end-use sector) |
| Emissions trajectory | 30% reduction from 2030; linear trend to 60% reduction from 2050 |
| Technology treatment | Vintages for process, electricity, industrial transport, residential and commercial technologies |
| | Exogenous learning curves for early technologies in electricity, transport and hydrogen
 All data corresponds to latest iteration |

UK ERC
Energy Service Demands

- Domestic air energy service demands
- Car transport energy service demands

UK ERC

psi
Base Fuel Prices

DTI base fossil import prices

- Natural gas
- Coal
- Oil

£/GJ

CO₂ emission levels

![Graph showing CO₂ emission levels from 2000 to 2050 with two lines: one for Base-case and one for CO₂ 60% reduction.]

UKERC

psi
Total Primary Energy

Total primary energy

petajoules (PJ)

0 2,000 4,000 6,000 8,000 10,000 12,000

Base
CO2-60
Base-case: production, imports, exports

Base case energy balance
60% CO\(_2\) case: production, imports, exports

CO\(_2\) 60% constrained case energy balance
Base-case: electricity output

Base-case - Electricity by fuel

- Solar
- Bio + waste fuels
- Wind
- Hydro
- Nuclear
- Oil
- Gas
- Coal cofire
- Coal

petajoule (PJ)

60% CO₂ case: electricity output

60% constraint-case - Electricity by fuel

- Solar
- Bio + waste fuels
- Wind
- Hydro
- Nuclear
- Oil
- Gas CCS
- Gas
- Coal CCS
- Coal cofire
Base-case: private road transport technology diffusion

Base case car technologies

- Petrol Hybrid
- Petrol
- Diesel
- Electric

B.v.km

60% CO$_2$ case: private road transport technology diffusion
Residential and services: conservation measures

Uptake of conservation measures

- Base case
- CO2-60%

Petajoules (PJ)

Sectoral CO₂ reduction: (electricity and hydrogen assigned to end-uses)
Total energy system costs

Undiscounted 2050 abatement cost is £8.2B
Marginal CO₂ prices

2050 CO₂ price at £152/TCO₂ or £557/TC

CO2 abatement prices

GBP / TCO₂

0 20 40 60 80 100 120 140 160

CO₂ marginal price
CAVEAT 2

SENSITIVITY ANALYSIS!!
Parametric & probabilistic
Initial list of modelling insights

- Baselines are crucial (low growth in this case)
- Energy imports are substantial and growing
- All sectors contribute to abatement
- Coal and CCS are key electricity base-load techs
- Renewables are key peaking and shoulder techs
- Comparatively less take-up of conservation
- CO₂ emission price signals are significant
Implications for policy and decision making

- Models are not truth machines. They are intended to stimulate thought and deliver insights into complex realities.
- Difference between:
 - Forecasts - derived from past trends, theory
 - Scenario projections - derived from input assumptions
- Importance of uncertainty/sensitivity analysis, ranges (rather than point estimates) of data
- Good models are GIGO (Garbage In, Garbage Out): crucial importance of transparent assumptions and sourced data (with ranges)
- Models should not be used to justify prior preferences or decisions (but can all too easily be used in this way)
- Importance of model evaluation: UKERC ESMT aspires to provide this over the medium term.
Thank you

Neil Strachan: strachan@psi.org.uk
Paul Ekins: p.ekins@psi.org.uk