THE ENERGY LADDER
A model for projecting energy demand

Dr. Tashi Erdmann Martin Haigh
Statistical Adviser Adviser Senior Energy
Shell Global Solutions Int. Shell
International
DISCLAIMER STATEMENT

The New Lens Scenarios” and “A Better Life with a Healthy Planet” are part of an ongoing process – scenario-building – used in Shell for more than 40 years to challenge executives’ perspectives on the future business environment. We base them on plausible assumptions and quantification, and they are designed to stretch management thinking and even to consider events that may only be remotely possible. Scenarios, therefore, are not intended to be predictions of likely future events or outcomes, and investors should not rely on them when making an investment decision with regard to Royal Dutch Shell plc securities.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations” respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets; and, successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2015 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 5 September 2016. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.
Shell’s New Lens Scenarios

Mountains

World - Total Primary Energy - By Source

- Oil
- Natural Gas
- Coal
- Biomass Traditional
- Hydro-electricity
- Solar
- Other Renewables
- Biofuels
- Biomass Gasified
- Biomass / Waste Solids
- Nuclear
- Geothermal
- Wind

Source: FSB Energy - Shell WBM v2.5.20 - Mountains - Balanced

Oceans

World - Total Primary Energy - By Source

- Oil
- Natural Gas
- Coal
- Biomass Traditional
- Hydro-electricity
- Solar
- Other Renewables
- Biofuels
- Biomass Gasified
- Biomass / Waste Solids
- Nuclear
- Geothermal
- Wind

Source: FSB Energy - Shell WBM v2.5.20 - Oceans - Balanced
Net-zero emissions world, towards the end of the century

Assumes 50% electrification of end use.

Source: Shell analysis
Six key drivers of the energy system

- Population
- Economic Growth
- Environmental Pressures
- Technology
- Resource Availability
- People’s Choices
Three core models form the heart of the World Energy Model

TOTAL DEMAND
- Energy vs. GDP/person
- Residential, Industry & Transport

ENERGY CHOICE
- Market Share vs. Price differential
- End User & Energy Producers

ENERGY SUPPLY
- Production/year vs. Time
- Fossil, Nuclear & Renewables
Energy Ladder – the relationship between energy demand and incomes is non-linear and partially country-specific

The Energy Ladder, 1960 - 2015 *

The inexorable link: economic growth and energy demand

* USA and UK from 1870.
Sources: IEA 2013; World Bank 2013; UN Population Division 2012; US EIA; UK DECC; Angus Maddison; Japan national statistics; Shell New Lens Scenarios

Copyright of Shell International BV
The inexorable link: economic growth and energy demand

The Energy Ladder, 1960 - 2012 *

Primary energy (GJ / capita / year)

GDP (PPP) / capita (2010 USD) [log scale]

USA, CAN

FRA, DEU, GBR

JPN

300-350 North America

130-160 W Europe, Japan

* USA and UK from 1870.
Sources: IEA 2013; World Bank 2013; UN Population Division 2012; US EIA; UK DECC; Angus Maddison; Japan national statistics; Shell New Lens Scenarios

Copyright of Shell International BV
The inexorable link: economic growth and energy demand

The Energy Ladder, 1960 - 2012 *

* USA and UK from 1870.
Sources: IEA 2013; World Bank 2013; UN Population Division 2012; US EIA; UK DECC; Angus Maddison; Japan national statistics; Shell New Lens Scenarios
The inexorable link: economic growth and energy demand

The Energy Ladder, 1960 - 2012 *

North America

Scandinavia, Australia, Asian Tigers

W Europe, Japan

* USA and UK from 1870.
Sources: IEA 2013; World Bank 2013; UN Population Division 2012; US EIA; UK DECC; Angus Maddison; Japan national statistics; Shell New Lens Scenarios
The inexorable link: economic growth and energy demand

The Energy Ladder, 1960 - 2012 *

* USA and UK from 1870.
Sources: IEA 2013; World Bank 2013; UN Population Division 2012; US EIA; UK DECC; Angus Maddison; Japan national statistics; Shell New Lens Scenarios
The inexorable link: economic growth and energy demand

The Energy Ladder, 1960 - 2012 *

* USA and UK from 1870.
Sources: IEA 2013; World Bank 2013; UN Population Division 2012; US EIA; UK DECC; Angus Maddison; Japan national statistics; Shell New Lens Scenarios

Copyright of Shell International BV
WEM Energy Ladders track non-linear growth with GDP, specific to each sector ...

Sector energy demand per capita versus GDP per capita

Sector energy demand in “Energy Service” (ES)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Unit of Energy service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Industry</td>
<td>Tonne of steel</td>
</tr>
<tr>
<td>Other Industry</td>
<td>Heating requirement in buildings</td>
</tr>
<tr>
<td>Services</td>
<td>Heating requirement in buildings</td>
</tr>
<tr>
<td>Passenger Transport</td>
<td>Passenger kilometre</td>
</tr>
<tr>
<td>Freight Transport</td>
<td>Tonne kilometre</td>
</tr>
<tr>
<td>Residential Heating</td>
<td>Heating requirement in buildings</td>
</tr>
<tr>
<td>Lighting Cooking</td>
<td>Heating requirement in buildings</td>
</tr>
<tr>
<td>Residential Appliances</td>
<td>Electricity need (benchmark = fridge)</td>
</tr>
<tr>
<td>Non energy</td>
<td>Oil equivalent for output</td>
</tr>
</tbody>
</table>
... and enable an evolution to “mature” at levels of demand, dependent on country-characteristics.

Example:

Residential Heating needs depend on the heating-degree days.
How are the energy ladders modelled?

- **Phase 1:** Linear
 - Slope and Price Elasticity estimated from:

 \[ES_{cap_{it}} = c_i + a \cdot GDP_{cap_{it}} + b \cdot Price_{it} + \epsilon_{it} \]

- **Phase 2:** S-Shape
 - Logistic curve to maturity level
 - Maturity levels estimated from:

 \[ES_{cap_{i,maturity}} = c + a \cdot X_i + \epsilon_i \]

- **Phase 3:** Linear, convergence to saturation level
 - Slope and Price Elasticity estimated as in Phase 1
Estimation of maturity level: linear regression

Example

Energy service in Heavy Industry at maturity (GDP/cap = $30k) depends on price, natural resources and economic policy.

Energy service per capita (GDP/cap = $30k)

\[
ES\text{cap}_{i,\text{mat}} = cpatter_{n} - 0.003 \cdot ES\text{Price}_{i,\text{mat}}
\]

R-squared = 92.4%

Percentage of variation in demand explained by this model.

Source: Shell analysis

*Countries removed: Oil & gas countries, Luxembourg, Finland

Copyright of Shell International BV
Estimation income and price elasticity: panel data regression

Example

Energy demand in Heavy Industry has a statistically significant price elasticity of -0.045 (after correcting for the effect of GDP)

Energy service per capita (GDP/cap > $30k)

\[E_{\text{Scap}}_{it} = c_i + \alpha_p \cdot GDP_{\text{capit}} + b \cdot Price_{it} + \epsilon_{it} \]

Price Elasticity = \(b \cdot \frac{E_{\text{Scap}}}{Price} \)

Coefficients:

<table>
<thead>
<tr>
<th>Coefficient/P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDPcap</td>
</tr>
<tr>
<td>-1.2358e-05 0.03561</td>
</tr>
<tr>
<td>GDPcap2</td>
</tr>
<tr>
<td>7.3795e-05 < 2.2e-16</td>
</tr>
<tr>
<td>GDPcap3</td>
</tr>
<tr>
<td>5.5433e-05 1.449e-07</td>
</tr>
<tr>
<td>Price</td>
</tr>
<tr>
<td>-4.7291e-04 0.03194</td>
</tr>
</tbody>
</table>

Effects statistically significant if P-value < 0.05

*Countries removed:
- Oil & gas countries
- Small countries

Source: Shell analysis

Copyright of Shell International BV
Energy Ladder example: Heavy Industry in India

Energy ladder selected sector

Source: Shell analysis

Note: dashed line is predicted
Energy Ladder example: Heavy Industry in China

Energy ladder selected sector

Source: Shell analysis

Note: dashed line is predicted
Heavy Industry: what if China’s demand is flat?

Base case

World - Energy Service Ladder - Heavy Industry - (1960 - 2060)

- USA
- India
- Germany
- Canada
- Brazil
- China
- Japan
- France
- United Kingdom
- South Korea

‘China flat’ scenario

World - Energy Service Ladder - Heavy Industry - (1960 - 2060)

- USA
- India
- Germany
- Canada
- Brazil
- China
- Japan
- France
- United Kingdom
- South Korea

Source: FSB Energy - Shell WEM v2.8.6
‘China flat’ leads to slowdown in global Heavy Industry

Base case

World - Energy Service Ladder - Heavy Industry - (1960 - 2060)

Note: dashed included to compare the ‘China flat’ scenario with the base case

‘China flat’ scenario

World - Energy Service Ladder - Heavy Industry - (1960 - 2060)

Source:
FSB Energy - Shell WEM v2.8.7

FSB Energy - Shell WEM v2.8.6 - China Flat HI
China’s share of world **Heavy Industry** (tonnes of steel equivalent) declines from 38% in 2015 to 23% in 2060

Base case

World - Energy Service - Heavy Industry

World - Energy Service Ladder - Heavy Industry - (1960 - 2060)

World - Total Final Consumption - Heavy Industry

World - Energy Ladder TFC - Heavy Industry - (1960 - 2060)

Source: FSB Energy - Shell WEM v2.8.6
Energy demand may double in the first half of this century

Mountains

Oceans

Source:
FSB Energy - Shell WEM v2.5.20 - Mountains - Balanced
FSB Energy - Shell WEM v2.5.20 - Oceans - Balanced